多波长可见光通信系统设计

P. Butala, H. Elgala, T. Little, P. Zarkesh-Ha
{"title":"多波长可见光通信系统设计","authors":"P. Butala, H. Elgala, T. Little, P. Zarkesh-Ha","doi":"10.1109/GLOCOMW.2014.7063486","DOIUrl":null,"url":null,"abstract":"Visible light communication (VLC) is achieved by modulation of one or more spectral components in the visible spectrum (≈380-780 um). The use of this range provides an opportunity to exploit an otherwise untapped medium that is used in human lighting. Most VLC systems constructed to date focus on using a broad visible band generated by phosphor-converted light emitting diodes, or by filtering to isolate the blue component from these sources. Multi-wavelength systems consider additional wavelength bands that are combined to produce the desired communications capacity and lighting output. This color combining, or mixing, realizes desired color temperature and intensity and represents a form of wavelength-division multiplexing. This paper investigates the relationships between the colors comprising the lighting source for a range of lighting states, the spectral separation of communication channels, the relative intensities required to realize lighting states, how modulation can be most effectively mapped to the available color channels, and the design of an optical filtering approach to maximize signal to noise ratio while minimizing crosstalk at the receiver. Simulation results based on a three colored VLC system are discussed using orthogonal frequency division multiplexing for each color. It is shown that the system is the most power efficient at 6250 K correlated color temperature, with transmitter spectral spread of 5 nm and filter transmittance width of 40 nm.","PeriodicalId":354340,"journal":{"name":"2014 IEEE Globecom Workshops (GC Wkshps)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-wavelength visible light communication system design\",\"authors\":\"P. Butala, H. Elgala, T. Little, P. Zarkesh-Ha\",\"doi\":\"10.1109/GLOCOMW.2014.7063486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible light communication (VLC) is achieved by modulation of one or more spectral components in the visible spectrum (≈380-780 um). The use of this range provides an opportunity to exploit an otherwise untapped medium that is used in human lighting. Most VLC systems constructed to date focus on using a broad visible band generated by phosphor-converted light emitting diodes, or by filtering to isolate the blue component from these sources. Multi-wavelength systems consider additional wavelength bands that are combined to produce the desired communications capacity and lighting output. This color combining, or mixing, realizes desired color temperature and intensity and represents a form of wavelength-division multiplexing. This paper investigates the relationships between the colors comprising the lighting source for a range of lighting states, the spectral separation of communication channels, the relative intensities required to realize lighting states, how modulation can be most effectively mapped to the available color channels, and the design of an optical filtering approach to maximize signal to noise ratio while minimizing crosstalk at the receiver. Simulation results based on a three colored VLC system are discussed using orthogonal frequency division multiplexing for each color. It is shown that the system is the most power efficient at 6250 K correlated color temperature, with transmitter spectral spread of 5 nm and filter transmittance width of 40 nm.\",\"PeriodicalId\":354340,\"journal\":{\"name\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2014.7063486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2014.7063486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

可见光通信(VLC)是通过调制可见光谱中的一个或多个光谱成分(≈380-780 um)来实现的。这个范围的使用提供了一个机会,以利用在人类照明中使用的其他未开发的媒介。迄今为止,大多数VLC系统都专注于使用由磷转换的发光二极管产生的宽可见波段,或者通过过滤来隔离这些光源中的蓝色成分。多波长系统考虑额外的波长波段,这些波段被组合起来以产生所需的通信容量和照明输出。这种颜色组合或混合实现了所需的色温和色强,并代表了波分复用的一种形式。本文研究了一系列照明状态下光源颜色之间的关系,通信信道的光谱分离,实现照明状态所需的相对强度,调制如何最有效地映射到可用的颜色通道,以及光滤波方法的设计,以最大限度地提高信噪比,同时减少接收机的串扰。讨论了采用正交频分复用技术对三色VLC系统的仿真结果。结果表明,该系统在相关色温为6250 K时功率效率最高,发射光谱展宽为5 nm,滤光片透过宽度为40 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-wavelength visible light communication system design
Visible light communication (VLC) is achieved by modulation of one or more spectral components in the visible spectrum (≈380-780 um). The use of this range provides an opportunity to exploit an otherwise untapped medium that is used in human lighting. Most VLC systems constructed to date focus on using a broad visible band generated by phosphor-converted light emitting diodes, or by filtering to isolate the blue component from these sources. Multi-wavelength systems consider additional wavelength bands that are combined to produce the desired communications capacity and lighting output. This color combining, or mixing, realizes desired color temperature and intensity and represents a form of wavelength-division multiplexing. This paper investigates the relationships between the colors comprising the lighting source for a range of lighting states, the spectral separation of communication channels, the relative intensities required to realize lighting states, how modulation can be most effectively mapped to the available color channels, and the design of an optical filtering approach to maximize signal to noise ratio while minimizing crosstalk at the receiver. Simulation results based on a three colored VLC system are discussed using orthogonal frequency division multiplexing for each color. It is shown that the system is the most power efficient at 6250 K correlated color temperature, with transmitter spectral spread of 5 nm and filter transmittance width of 40 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信