应用SPEA2显著性矩阵进行分类特征选择

Ekapong Chuasuwan, Narissara Eiamkanitchat
{"title":"应用SPEA2显著性矩阵进行分类特征选择","authors":"Ekapong Chuasuwan, Narissara Eiamkanitchat","doi":"10.1109/ICSEC.2013.6694809","DOIUrl":null,"url":null,"abstract":"This paper presents a novel application of Genetic Algorithm for the feature selection. The main purpose is to provide proper subset features for decision tree construction in the classification task. New method with the use of “Significant Matrix” on genetic algorithm is presented. The main function is to calculate the relationship between the feature and class label assigned to a fitness value for the population. The algorithm presented important features selected by considering the class of the data and number of features for the least amount in the Significant Matrix. The next step will then update the feature number and the record number to repeat the process until a stop condition is met. Classification by decision tree is used to verify the importance of the features selected by the proposed method. The model tested with 11 different datasets. The results show that the method yields high accuracy of the classification and higher satisfaction compared to classification using artificial neural network. Experimental results show that the proposed method not only provides a higher accuracy, but also reduce the complexity by using less features of the dataset.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The feature selection for classification by applying the Significant Matrix with SPEA2\",\"authors\":\"Ekapong Chuasuwan, Narissara Eiamkanitchat\",\"doi\":\"10.1109/ICSEC.2013.6694809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel application of Genetic Algorithm for the feature selection. The main purpose is to provide proper subset features for decision tree construction in the classification task. New method with the use of “Significant Matrix” on genetic algorithm is presented. The main function is to calculate the relationship between the feature and class label assigned to a fitness value for the population. The algorithm presented important features selected by considering the class of the data and number of features for the least amount in the Significant Matrix. The next step will then update the feature number and the record number to repeat the process until a stop condition is met. Classification by decision tree is used to verify the importance of the features selected by the proposed method. The model tested with 11 different datasets. The results show that the method yields high accuracy of the classification and higher satisfaction compared to classification using artificial neural network. Experimental results show that the proposed method not only provides a higher accuracy, but also reduce the complexity by using less features of the dataset.\",\"PeriodicalId\":191620,\"journal\":{\"name\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC.2013.6694809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的遗传算法在特征选择中的应用。其主要目的是为分类任务中的决策树构造提供适当的子集特征。提出了在遗传算法上使用“有效矩阵”的新方法。主要功能是计算分配给总体适应度值的特征和类标签之间的关系。该算法通过考虑数据的类别和显著矩阵中数量最少的特征来选择重要特征。然后,下一步将更新特征号和记录号以重复该过程,直到满足停止条件。使用决策树分类来验证所提出方法所选择的特征的重要性。该模型用11个不同的数据集进行了测试。结果表明,与人工神经网络分类相比,该方法具有较高的分类精度和满意度。实验结果表明,该方法不仅具有较高的准确率,而且通过使用较少的数据集特征来降低复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The feature selection for classification by applying the Significant Matrix with SPEA2
This paper presents a novel application of Genetic Algorithm for the feature selection. The main purpose is to provide proper subset features for decision tree construction in the classification task. New method with the use of “Significant Matrix” on genetic algorithm is presented. The main function is to calculate the relationship between the feature and class label assigned to a fitness value for the population. The algorithm presented important features selected by considering the class of the data and number of features for the least amount in the Significant Matrix. The next step will then update the feature number and the record number to repeat the process until a stop condition is met. Classification by decision tree is used to verify the importance of the features selected by the proposed method. The model tested with 11 different datasets. The results show that the method yields high accuracy of the classification and higher satisfaction compared to classification using artificial neural network. Experimental results show that the proposed method not only provides a higher accuracy, but also reduce the complexity by using less features of the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信