能源互联网背景下月度负荷预测模型及季节性特征效应分析

Fangyuan Yang, Limin Xue, Tianmeng Yang, D. Xia
{"title":"能源互联网背景下月度负荷预测模型及季节性特征效应分析","authors":"Fangyuan Yang, Limin Xue, Tianmeng Yang, D. Xia","doi":"10.1109/SDPC.2019.00129","DOIUrl":null,"url":null,"abstract":"A monthly load forecasting method based on load trend is proposed for monthly load data, which has dual characteristics of long-term trend and periodic fluctuation. Taking the monthly power generation from August 2012 to July 2017 as the research object, the monthly load data are decomposed into long-term trend and cyclic variation sequence, seasonal factor sequence and error sequence by seasonal decomposition. This paper focuses on the monthly cycle component characteristics of the four high energy-consuming industries, and deep analyses the characteristics of the monthly cycle component of the sub-industries electricity consumption and its impact on the electricity consumption of the industry. The monthly power generation from August 2017 to July 2018 is predicted by ARIMA model. The results show that the seasonal fluctuation law of monthly power generation is significant, and the relative errors of forecasting results are less than 3%, which verifies the validity and applicability of this method.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monthly Load Forecasting Model and Seasonal Characteristic Effect Analysis under the Background of Energy Internet\",\"authors\":\"Fangyuan Yang, Limin Xue, Tianmeng Yang, D. Xia\",\"doi\":\"10.1109/SDPC.2019.00129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A monthly load forecasting method based on load trend is proposed for monthly load data, which has dual characteristics of long-term trend and periodic fluctuation. Taking the monthly power generation from August 2012 to July 2017 as the research object, the monthly load data are decomposed into long-term trend and cyclic variation sequence, seasonal factor sequence and error sequence by seasonal decomposition. This paper focuses on the monthly cycle component characteristics of the four high energy-consuming industries, and deep analyses the characteristics of the monthly cycle component of the sub-industries electricity consumption and its impact on the electricity consumption of the industry. The monthly power generation from August 2017 to July 2018 is predicted by ARIMA model. The results show that the seasonal fluctuation law of monthly power generation is significant, and the relative errors of forecasting results are less than 3%, which verifies the validity and applicability of this method.\",\"PeriodicalId\":403595,\"journal\":{\"name\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDPC.2019.00129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有长期趋势和周期性波动双重特征的月度负荷数据,提出了一种基于负荷趋势的月度负荷预测方法。以2012年8月至2017年7月的月度发电量为研究对象,通过季节分解将月度负荷数据分解为长期趋势与循环变化序列、季节因子序列和误差序列。本文重点研究了四大高耗能行业的月周期构成特征,深入分析了子行业用电量的月周期构成特征及其对行业用电量的影响。采用ARIMA模型对2017年8月至2018年7月的月发电量进行预测。结果表明,月发电量的季节波动规律显著,预测结果的相对误差小于3%,验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monthly Load Forecasting Model and Seasonal Characteristic Effect Analysis under the Background of Energy Internet
A monthly load forecasting method based on load trend is proposed for monthly load data, which has dual characteristics of long-term trend and periodic fluctuation. Taking the monthly power generation from August 2012 to July 2017 as the research object, the monthly load data are decomposed into long-term trend and cyclic variation sequence, seasonal factor sequence and error sequence by seasonal decomposition. This paper focuses on the monthly cycle component characteristics of the four high energy-consuming industries, and deep analyses the characteristics of the monthly cycle component of the sub-industries electricity consumption and its impact on the electricity consumption of the industry. The monthly power generation from August 2017 to July 2018 is predicted by ARIMA model. The results show that the seasonal fluctuation law of monthly power generation is significant, and the relative errors of forecasting results are less than 3%, which verifies the validity and applicability of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信