{"title":"大规模语言模型生成文本检测的局限性","authors":"L. Varshney, N. Keskar, R. Socher","doi":"10.1109/ITA50056.2020.9245012","DOIUrl":null,"url":null,"abstract":"Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns. Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated. We show that error exponents for particular language models are bounded in terms of their perplexity, a standard measure of language generation performance. Under the assumption that human language is stationary and ergodic, the formulation is ex-tended from considering specific language models to considering maximum likelihood language models, among the class of k-order Markov approximations; error probabilities are characterized. Some discussion of incorporating semantic side information is also given.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Limits of Detecting Text Generated by Large-Scale Language Models\",\"authors\":\"L. Varshney, N. Keskar, R. Socher\",\"doi\":\"10.1109/ITA50056.2020.9245012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns. Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated. We show that error exponents for particular language models are bounded in terms of their perplexity, a standard measure of language generation performance. Under the assumption that human language is stationary and ergodic, the formulation is ex-tended from considering specific language models to considering maximum likelihood language models, among the class of k-order Markov approximations; error probabilities are characterized. Some discussion of incorporating semantic side information is also given.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9245012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9245012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Limits of Detecting Text Generated by Large-Scale Language Models
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns. Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated. We show that error exponents for particular language models are bounded in terms of their perplexity, a standard measure of language generation performance. Under the assumption that human language is stationary and ergodic, the formulation is ex-tended from considering specific language models to considering maximum likelihood language models, among the class of k-order Markov approximations; error probabilities are characterized. Some discussion of incorporating semantic side information is also given.