M. Altaee, A. Jawad, M. Jalil, S. Al-Kikani, A. Oleiwi, Hatira Gunerhan
{"title":"基于机器学习的体育训练中学生活动智能捕捉与评估多级融合系统","authors":"M. Altaee, A. Jawad, M. Jalil, S. Al-Kikani, A. Oleiwi, Hatira Gunerhan","doi":"10.54216/jisiot.090101","DOIUrl":null,"url":null,"abstract":"To record and evaluate students' physical education class participation, this study proposes using a Machine Learning aided Physical Training Framework (ML-PTF). Improve student achievement in physical education with the help of the Multi-level Fusion System that employs machine learning strategies. The system integrates sensor data, video data, and contextual data to deliver a holistic and precise evaluation of student engagement. This study's simulation analysis shows that the ML-PTF improves the reliability of evaluating universities' physical education programs. A important reference path and paradigm for advancing tertiary-level physical education for graduates, the multi-level fusion system also provides an investigation of information technology and language education integration. The experimental findings demonstrate that the ML-PTF is superior to other approaches in terms of learning rate, f1-score, precision, and probability, as well as student engagement, involvement, and recognition accuracy.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-level Fusion System for Intelligent Capture and Assessment of Student Activity in Physical Training based on Machine Learning\",\"authors\":\"M. Altaee, A. Jawad, M. Jalil, S. Al-Kikani, A. Oleiwi, Hatira Gunerhan\",\"doi\":\"10.54216/jisiot.090101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To record and evaluate students' physical education class participation, this study proposes using a Machine Learning aided Physical Training Framework (ML-PTF). Improve student achievement in physical education with the help of the Multi-level Fusion System that employs machine learning strategies. The system integrates sensor data, video data, and contextual data to deliver a holistic and precise evaluation of student engagement. This study's simulation analysis shows that the ML-PTF improves the reliability of evaluating universities' physical education programs. A important reference path and paradigm for advancing tertiary-level physical education for graduates, the multi-level fusion system also provides an investigation of information technology and language education integration. The experimental findings demonstrate that the ML-PTF is superior to other approaches in terms of learning rate, f1-score, precision, and probability, as well as student engagement, involvement, and recognition accuracy.\",\"PeriodicalId\":122556,\"journal\":{\"name\":\"Journal of Intelligent Systems and Internet of Things\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jisiot.090101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.090101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-level Fusion System for Intelligent Capture and Assessment of Student Activity in Physical Training based on Machine Learning
To record and evaluate students' physical education class participation, this study proposes using a Machine Learning aided Physical Training Framework (ML-PTF). Improve student achievement in physical education with the help of the Multi-level Fusion System that employs machine learning strategies. The system integrates sensor data, video data, and contextual data to deliver a holistic and precise evaluation of student engagement. This study's simulation analysis shows that the ML-PTF improves the reliability of evaluating universities' physical education programs. A important reference path and paradigm for advancing tertiary-level physical education for graduates, the multi-level fusion system also provides an investigation of information technology and language education integration. The experimental findings demonstrate that the ML-PTF is superior to other approaches in terms of learning rate, f1-score, precision, and probability, as well as student engagement, involvement, and recognition accuracy.