疲劳和腐蚀疲劳寿命评估及其在自增强零件上的应用

V. Okorokov, D. Mackenzie, Y. Gorash
{"title":"疲劳和腐蚀疲劳寿命评估及其在自增强零件上的应用","authors":"V. Okorokov, D. Mackenzie, Y. Gorash","doi":"10.1115/PVP2018-84536","DOIUrl":null,"url":null,"abstract":"This study investigates an effect of autofrettage on the fatigue and corrosion fatigue life of high pressure parts made from low carbon structural steel. To estimate the beneficial effect of autofrettage application, an extensive experimental program and advanced theoretical modelling are conducted and analyzed in this study. Accurate calculation of compressive residual stresses is achieved by application of a cyclic plasticity model which can precisely simulate a cyclic plasticity response of material. In terms of a fatigue life prediction methodology, a non-local stress based approach with a modified critical distance theory is used for prediction of the crack initiation stage providing conservative fatigue assessment. Because of the fact that the crack propagation stage can take a considerable part of the total life for autofrettaged parts, more accurate fatigue life calculation is performed by the use of a fracture mechanics approach. The total fatigue life time of autofrettaged parts is then calculated as a sum of the crack initiation and propagation stages.","PeriodicalId":275459,"journal":{"name":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fatigue and Corrosion Fatigue Life Assessment With Application to Autofrettaged Parts\",\"authors\":\"V. Okorokov, D. Mackenzie, Y. Gorash\",\"doi\":\"10.1115/PVP2018-84536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates an effect of autofrettage on the fatigue and corrosion fatigue life of high pressure parts made from low carbon structural steel. To estimate the beneficial effect of autofrettage application, an extensive experimental program and advanced theoretical modelling are conducted and analyzed in this study. Accurate calculation of compressive residual stresses is achieved by application of a cyclic plasticity model which can precisely simulate a cyclic plasticity response of material. In terms of a fatigue life prediction methodology, a non-local stress based approach with a modified critical distance theory is used for prediction of the crack initiation stage providing conservative fatigue assessment. Because of the fact that the crack propagation stage can take a considerable part of the total life for autofrettaged parts, more accurate fatigue life calculation is performed by the use of a fracture mechanics approach. The total fatigue life time of autofrettaged parts is then calculated as a sum of the crack initiation and propagation stages.\",\"PeriodicalId\":275459,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了自强化对低碳结构钢高压件疲劳和腐蚀疲劳寿命的影响。为了评估自增强应用的有益效果,本研究进行了广泛的实验程序和先进的理论建模,并进行了分析。应用循环塑性模型精确模拟材料的循环塑性响应,实现了残余压应力的精确计算。在疲劳寿命预测方法方面,采用基于非局部应力的方法和改进的临界距离理论来预测裂纹起裂阶段,提供保守的疲劳评估。由于裂纹扩展阶段可能会占用自增强零件总寿命的相当一部分,因此使用断裂力学方法可以进行更精确的疲劳寿命计算。然后用裂纹萌生和扩展阶段的总和计算自增强零件的总疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue and Corrosion Fatigue Life Assessment With Application to Autofrettaged Parts
This study investigates an effect of autofrettage on the fatigue and corrosion fatigue life of high pressure parts made from low carbon structural steel. To estimate the beneficial effect of autofrettage application, an extensive experimental program and advanced theoretical modelling are conducted and analyzed in this study. Accurate calculation of compressive residual stresses is achieved by application of a cyclic plasticity model which can precisely simulate a cyclic plasticity response of material. In terms of a fatigue life prediction methodology, a non-local stress based approach with a modified critical distance theory is used for prediction of the crack initiation stage providing conservative fatigue assessment. Because of the fact that the crack propagation stage can take a considerable part of the total life for autofrettaged parts, more accurate fatigue life calculation is performed by the use of a fracture mechanics approach. The total fatigue life time of autofrettaged parts is then calculated as a sum of the crack initiation and propagation stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信