基于Hopfield人工神经网络的胸部CT图像心脏区域提取与分割

R. Sammouda, R. M. Jomaa, H. Mathkour
{"title":"基于Hopfield人工神经网络的胸部CT图像心脏区域提取与分割","authors":"R. Sammouda, R. M. Jomaa, H. Mathkour","doi":"10.1109/ICITES.2012.6216678","DOIUrl":null,"url":null,"abstract":"A system for extracting and segmenting heart regions from three-dimensional (3D) CT chest images is proposed in this paper. At first, the regions of interest (ROIs) are extracted using pure basic image processing techniques applied on the 2D CT slices. Secondly, the ROIs in each slice are segmented using Hopfield Artificial Neural Networks (HANN). The segmentation results include tissues belonging to the heart and its surrounding organs. To distinguish between heart regions and the non-heart regions, a rule-based filtering approach is adopted. The system is evaluated using a database of 735 chest CT slices from 5 patients. It shows a good and accurate performance with some exceptions.","PeriodicalId":137864,"journal":{"name":"2012 International Conference on Information Technology and e-Services","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heart region extraction and segmentation from chest CT images using Hopfield Artificial Neural Networks\",\"authors\":\"R. Sammouda, R. M. Jomaa, H. Mathkour\",\"doi\":\"10.1109/ICITES.2012.6216678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system for extracting and segmenting heart regions from three-dimensional (3D) CT chest images is proposed in this paper. At first, the regions of interest (ROIs) are extracted using pure basic image processing techniques applied on the 2D CT slices. Secondly, the ROIs in each slice are segmented using Hopfield Artificial Neural Networks (HANN). The segmentation results include tissues belonging to the heart and its surrounding organs. To distinguish between heart regions and the non-heart regions, a rule-based filtering approach is adopted. The system is evaluated using a database of 735 chest CT slices from 5 patients. It shows a good and accurate performance with some exceptions.\",\"PeriodicalId\":137864,\"journal\":{\"name\":\"2012 International Conference on Information Technology and e-Services\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Technology and e-Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITES.2012.6216678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Technology and e-Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITES.2012.6216678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种从三维CT胸部图像中提取和分割心脏区域的系统。首先,利用纯基础图像处理技术对二维CT切片提取感兴趣区域(roi)。其次,利用Hopfield人工神经网络(HANN)对每个切片的roi进行分割;分割结果包括属于心脏及其周围器官的组织。为了区分心脏区域和非心脏区域,采用了基于规则的过滤方法。该系统使用来自5名患者的735个胸部CT切片数据库进行评估。它显示出良好的准确性能,但也有一些例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart region extraction and segmentation from chest CT images using Hopfield Artificial Neural Networks
A system for extracting and segmenting heart regions from three-dimensional (3D) CT chest images is proposed in this paper. At first, the regions of interest (ROIs) are extracted using pure basic image processing techniques applied on the 2D CT slices. Secondly, the ROIs in each slice are segmented using Hopfield Artificial Neural Networks (HANN). The segmentation results include tissues belonging to the heart and its surrounding organs. To distinguish between heart regions and the non-heart regions, a rule-based filtering approach is adopted. The system is evaluated using a database of 735 chest CT slices from 5 patients. It shows a good and accurate performance with some exceptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信