H. C. Bidsorkhi, Alessandro Giuseppe D Aloia, A. Tamburrano, G. De Bellis, M. S. Sarto
{"title":"用于汗液传感的多孔石墨烯基PVDF气凝胶复合材料","authors":"H. C. Bidsorkhi, Alessandro Giuseppe D Aloia, A. Tamburrano, G. De Bellis, M. S. Sarto","doi":"10.1109/NANO.2018.8626292","DOIUrl":null,"url":null,"abstract":"A porous graphene based PVDF aerogel is produced through a cost-effective procedure, for possible application as sweat sensor. The aerogel samples were characterized in terms of porosity, density, morphological and electrical properties through high-resolution scanning electron microscopy (HR-SEM) and time-monitoring of the sample dc electrical resistance.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Porous Graphene Based PVDF Aerogel Composite for Sweat Sensing Applications\",\"authors\":\"H. C. Bidsorkhi, Alessandro Giuseppe D Aloia, A. Tamburrano, G. De Bellis, M. S. Sarto\",\"doi\":\"10.1109/NANO.2018.8626292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A porous graphene based PVDF aerogel is produced through a cost-effective procedure, for possible application as sweat sensor. The aerogel samples were characterized in terms of porosity, density, morphological and electrical properties through high-resolution scanning electron microscopy (HR-SEM) and time-monitoring of the sample dc electrical resistance.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Porous Graphene Based PVDF Aerogel Composite for Sweat Sensing Applications
A porous graphene based PVDF aerogel is produced through a cost-effective procedure, for possible application as sweat sensor. The aerogel samples were characterized in terms of porosity, density, morphological and electrical properties through high-resolution scanning electron microscopy (HR-SEM) and time-monitoring of the sample dc electrical resistance.