{"title":"基于Dwt-Svd感知哈希函数的卷积神经网络图像分类新方法","authors":"Fatih Özyurt, Hüseyin Kutlu, E. Avci, Derya Avcı","doi":"10.1109/UBMK.2018.8566537","DOIUrl":null,"url":null,"abstract":"This paper proposes a method by using Convolutional Neural Network (CNN), which reduces the image classification time and maintains the classification performance above an acceptable threshold. A hybrid model called Discrete Wavelet Transform Singular Value Decomposition based Perceptual Hash Convolutional Neural Network (DWT-SVD-PH-CNN) is proposed by using a perceptual hash function together with CNN to reduce the classification time. In the proposed method, the DWT-SVD- based perceptual hash function is used. The most important feature of perceptual hash functions is to obtain the salient features of images. First, DWT-SVD based perceptual hash function is applied to images for obtaining salient features. Then, images making up of salient features, are produced in 32 x 32 format and given as inputs to CNN, where Support Vector Machine (SVM) is used to classify the images. In this paper, the DWT-SVD-PH-CNN method is applied to Caltech 101 image database. Experimental results show that the proposed DWT-SVD-PH-CNN method has a high accuracy, about 95.8 %. Moreover, this method reduces the execution time from 241.21 seconds to 83.08 seconds compared to the classical method. Thus, the experimental results show that the proposed DWT-SVD-PH-CNN method performs much faster than classical CNN by maintaining the image classification accuracy high.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"7 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Method for Classification of Images Using Convolutional Neural Network Based on Dwt-Svd Perceptual Hash Function\",\"authors\":\"Fatih Özyurt, Hüseyin Kutlu, E. Avci, Derya Avcı\",\"doi\":\"10.1109/UBMK.2018.8566537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method by using Convolutional Neural Network (CNN), which reduces the image classification time and maintains the classification performance above an acceptable threshold. A hybrid model called Discrete Wavelet Transform Singular Value Decomposition based Perceptual Hash Convolutional Neural Network (DWT-SVD-PH-CNN) is proposed by using a perceptual hash function together with CNN to reduce the classification time. In the proposed method, the DWT-SVD- based perceptual hash function is used. The most important feature of perceptual hash functions is to obtain the salient features of images. First, DWT-SVD based perceptual hash function is applied to images for obtaining salient features. Then, images making up of salient features, are produced in 32 x 32 format and given as inputs to CNN, where Support Vector Machine (SVM) is used to classify the images. In this paper, the DWT-SVD-PH-CNN method is applied to Caltech 101 image database. Experimental results show that the proposed DWT-SVD-PH-CNN method has a high accuracy, about 95.8 %. Moreover, this method reduces the execution time from 241.21 seconds to 83.08 seconds compared to the classical method. Thus, the experimental results show that the proposed DWT-SVD-PH-CNN method performs much faster than classical CNN by maintaining the image classification accuracy high.\",\"PeriodicalId\":293249,\"journal\":{\"name\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"7 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2018.8566537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Method for Classification of Images Using Convolutional Neural Network Based on Dwt-Svd Perceptual Hash Function
This paper proposes a method by using Convolutional Neural Network (CNN), which reduces the image classification time and maintains the classification performance above an acceptable threshold. A hybrid model called Discrete Wavelet Transform Singular Value Decomposition based Perceptual Hash Convolutional Neural Network (DWT-SVD-PH-CNN) is proposed by using a perceptual hash function together with CNN to reduce the classification time. In the proposed method, the DWT-SVD- based perceptual hash function is used. The most important feature of perceptual hash functions is to obtain the salient features of images. First, DWT-SVD based perceptual hash function is applied to images for obtaining salient features. Then, images making up of salient features, are produced in 32 x 32 format and given as inputs to CNN, where Support Vector Machine (SVM) is used to classify the images. In this paper, the DWT-SVD-PH-CNN method is applied to Caltech 101 image database. Experimental results show that the proposed DWT-SVD-PH-CNN method has a high accuracy, about 95.8 %. Moreover, this method reduces the execution time from 241.21 seconds to 83.08 seconds compared to the classical method. Thus, the experimental results show that the proposed DWT-SVD-PH-CNN method performs much faster than classical CNN by maintaining the image classification accuracy high.