正则化技术在近场声学全息中的应用

E. Williams
{"title":"正则化技术在近场声学全息中的应用","authors":"E. Williams","doi":"10.1115/imece2000-1621","DOIUrl":null,"url":null,"abstract":"\n Nearfield Acoustical Holography (NAH) is an inverse problem in wave propagation which has found applications to both interior and exterior noise control problems. We can view the fundamental equation of NAH in the spatial frequency domain as a linear equation, p=Gv, where p is the measured pressure, v is the unknown normal velocity (usually on the surface of a vibrator), and G is the known transfer function. NAH inverts this equation solving for the velocity. However, this equation is ill-posed since small changes in p usually lead to large changes in v. Thus the need for regularization of the inversion. We will discuss regularization techniques applied to NAH, and will compare the errors associated with several regularization schemes; Tikhonov, conjugate gradient, Landweber iteration and a simple exponential filter approach (which appears to provide the best results). Furthermore, in an effort to illuminate the physical propagation mechanisms of NAH, we will discuss these approaches in the light of k-space.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regularization Techniques Applied to Nearfield Acoustical Holography\",\"authors\":\"E. Williams\",\"doi\":\"10.1115/imece2000-1621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nearfield Acoustical Holography (NAH) is an inverse problem in wave propagation which has found applications to both interior and exterior noise control problems. We can view the fundamental equation of NAH in the spatial frequency domain as a linear equation, p=Gv, where p is the measured pressure, v is the unknown normal velocity (usually on the surface of a vibrator), and G is the known transfer function. NAH inverts this equation solving for the velocity. However, this equation is ill-posed since small changes in p usually lead to large changes in v. Thus the need for regularization of the inversion. We will discuss regularization techniques applied to NAH, and will compare the errors associated with several regularization schemes; Tikhonov, conjugate gradient, Landweber iteration and a simple exponential filter approach (which appears to provide the best results). Furthermore, in an effort to illuminate the physical propagation mechanisms of NAH, we will discuss these approaches in the light of k-space.\",\"PeriodicalId\":387882,\"journal\":{\"name\":\"Noise Control and Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近场声学全息(NAH)是波传播中的一个逆问题,在室内外噪声控制问题中都有应用。我们可以将NAH在空间频域的基本方程看作线性方程,p=Gv,其中p为测量压力,v为未知的法向速度(通常在振动器表面),G为已知的传递函数。NAH把这个方程反过来解速度。然而,这个方程是不适定的,因为p的小变化通常会导致v的大变化,因此需要对反演进行正则化。我们将讨论应用于NAH的正则化技术,并将比较几种正则化方案相关的误差;Tikhonov,共轭梯度,Landweber迭代和一个简单的指数滤波方法(似乎提供了最好的结果)。此外,为了阐明NAH的物理传播机制,我们将在k空间中讨论这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization Techniques Applied to Nearfield Acoustical Holography
Nearfield Acoustical Holography (NAH) is an inverse problem in wave propagation which has found applications to both interior and exterior noise control problems. We can view the fundamental equation of NAH in the spatial frequency domain as a linear equation, p=Gv, where p is the measured pressure, v is the unknown normal velocity (usually on the surface of a vibrator), and G is the known transfer function. NAH inverts this equation solving for the velocity. However, this equation is ill-posed since small changes in p usually lead to large changes in v. Thus the need for regularization of the inversion. We will discuss regularization techniques applied to NAH, and will compare the errors associated with several regularization schemes; Tikhonov, conjugate gradient, Landweber iteration and a simple exponential filter approach (which appears to provide the best results). Furthermore, in an effort to illuminate the physical propagation mechanisms of NAH, we will discuss these approaches in the light of k-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信