{"title":"基于第一性原理研究Nb3Pt和NbPt3相结构、弹性和电子性能的比较","authors":"R. Fono-Tamo, Jen Tien-Chien, O. Bhila","doi":"10.1115/IMECE2018-86911","DOIUrl":null,"url":null,"abstract":"Two phases of the Nb-Pt system namely Nb3Pt and NbPt3 have been studied using first principles approach in CASTEP. Structural, elastic and electronic properties of the concerned binary alloys were determined and examined against each other. Although both alloys have the same structure, it was observed that the percentage difference in the change of lattice parameters varied. Nb3Pt exhibited a 0.073% change while NbPt3 had a 14.809% change making Nb3Pt more stable structurally than NbPt3. The elastic properties showed that both binaries are ductile materials but NbPt3 proved to be more ductile than Nb3Pt based on Born, Pugh’s and Frantsevich’s criteria. Through the electronic properties, both binaries were proven to be conducting and their bonding nature seen as a combination of ionic metallic and covalent bond.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Assessment of the Structural, Elastic and Electronic Properties of Nb3Pt and NbPt3 Phases Through First-Principles Study\",\"authors\":\"R. Fono-Tamo, Jen Tien-Chien, O. Bhila\",\"doi\":\"10.1115/IMECE2018-86911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two phases of the Nb-Pt system namely Nb3Pt and NbPt3 have been studied using first principles approach in CASTEP. Structural, elastic and electronic properties of the concerned binary alloys were determined and examined against each other. Although both alloys have the same structure, it was observed that the percentage difference in the change of lattice parameters varied. Nb3Pt exhibited a 0.073% change while NbPt3 had a 14.809% change making Nb3Pt more stable structurally than NbPt3. The elastic properties showed that both binaries are ductile materials but NbPt3 proved to be more ductile than Nb3Pt based on Born, Pugh’s and Frantsevich’s criteria. Through the electronic properties, both binaries were proven to be conducting and their bonding nature seen as a combination of ionic metallic and covalent bond.\",\"PeriodicalId\":119074,\"journal\":{\"name\":\"Volume 12: Materials: Genetics to Structures\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 12: Materials: Genetics to Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparative Assessment of the Structural, Elastic and Electronic Properties of Nb3Pt and NbPt3 Phases Through First-Principles Study
Two phases of the Nb-Pt system namely Nb3Pt and NbPt3 have been studied using first principles approach in CASTEP. Structural, elastic and electronic properties of the concerned binary alloys were determined and examined against each other. Although both alloys have the same structure, it was observed that the percentage difference in the change of lattice parameters varied. Nb3Pt exhibited a 0.073% change while NbPt3 had a 14.809% change making Nb3Pt more stable structurally than NbPt3. The elastic properties showed that both binaries are ductile materials but NbPt3 proved to be more ductile than Nb3Pt based on Born, Pugh’s and Frantsevich’s criteria. Through the electronic properties, both binaries were proven to be conducting and their bonding nature seen as a combination of ionic metallic and covalent bond.