盲眼SLAM:一种高效的基于特征的单目SLAM系统

Feng Yang, Baibing Jie, Hongxuan Song, Haotian Li
{"title":"盲眼SLAM:一种高效的基于特征的单目SLAM系统","authors":"Feng Yang, Baibing Jie, Hongxuan Song, Haotian Li","doi":"10.1109/YAC57282.2022.10023629","DOIUrl":null,"url":null,"abstract":"The feature matching quality plays an important role in the robustness and location accuracy of feature-based Simultaneous Localization and Mapping (SLAM) system, in which descriptor is significant of tracking and re-localization. In this paper, we propose an efficient feature-based Monocular SLAM system, BEBLID-SLAM, which use BEBLID descriptor for feature matching in ORB-SLAM pipeline. In the proposed system, adopting histogram equalization to preprocess input images and offline training Bag-of-Words for BEBLID is respectively adopted to preprocess input images and realize re-localization and loop closure. Moreover, we valided that our algorithm has outstanding performance in robustness and accuracy than the popular algorithms in the public dataset EuRoC","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEBLID-SLAM: An Efficient Feature-Based Monocular SLAM System\",\"authors\":\"Feng Yang, Baibing Jie, Hongxuan Song, Haotian Li\",\"doi\":\"10.1109/YAC57282.2022.10023629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feature matching quality plays an important role in the robustness and location accuracy of feature-based Simultaneous Localization and Mapping (SLAM) system, in which descriptor is significant of tracking and re-localization. In this paper, we propose an efficient feature-based Monocular SLAM system, BEBLID-SLAM, which use BEBLID descriptor for feature matching in ORB-SLAM pipeline. In the proposed system, adopting histogram equalization to preprocess input images and offline training Bag-of-Words for BEBLID is respectively adopted to preprocess input images and realize re-localization and loop closure. Moreover, we valided that our algorithm has outstanding performance in robustness and accuracy than the popular algorithms in the public dataset EuRoC\",\"PeriodicalId\":272227,\"journal\":{\"name\":\"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC57282.2022.10023629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC57282.2022.10023629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征匹配质量对基于特征的同步定位与映射(SLAM)系统的鲁棒性和定位精度起着至关重要的作用,其中描述符对跟踪和再定位具有重要意义。本文提出了一种高效的基于特征的单目SLAM系统beblind -SLAM,该系统使用beblind描述符对ORB-SLAM管道中的特征进行匹配。在本系统中,分别采用直方图均衡化对输入图像进行预处理,采用离线训练Bag-of-Words进行beblind预处理,实现输入图像的再定位和闭环。此外,我们在公共数据集EuRoC中验证了我们的算法在鲁棒性和准确性方面比流行的算法有突出的表现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEBLID-SLAM: An Efficient Feature-Based Monocular SLAM System
The feature matching quality plays an important role in the robustness and location accuracy of feature-based Simultaneous Localization and Mapping (SLAM) system, in which descriptor is significant of tracking and re-localization. In this paper, we propose an efficient feature-based Monocular SLAM system, BEBLID-SLAM, which use BEBLID descriptor for feature matching in ORB-SLAM pipeline. In the proposed system, adopting histogram equalization to preprocess input images and offline training Bag-of-Words for BEBLID is respectively adopted to preprocess input images and realize re-localization and loop closure. Moreover, we valided that our algorithm has outstanding performance in robustness and accuracy than the popular algorithms in the public dataset EuRoC
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信