基于HM-GMM的MIMO-AR混合物非平稳源分离与系统辨识

Jiong Li, Hang Zhang, Menglan Fan
{"title":"基于HM-GMM的MIMO-AR混合物非平稳源分离与系统辨识","authors":"Jiong Li, Hang Zhang, Menglan Fan","doi":"10.1109/EIIS.2017.8298650","DOIUrl":null,"url":null,"abstract":"A technique for non-stationary source separation is proposed for multiple-input multiple-output auto-regressive (MIMO-AR) mixtures. Hidden Markov Gaussian mixture model (HM-GMM) is employed in this paper to represent source model. Expectation-maximum algorithm is used to achieve MIMO-AR model identification, and then blind source separation (BSS) is achieved by matrix joint diagonalization. Simulation results show its effectiveness, not only for system identification, but also for BSS.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary source separation and system identification for MIMO-AR mixtures using HM-GMM\",\"authors\":\"Jiong Li, Hang Zhang, Menglan Fan\",\"doi\":\"10.1109/EIIS.2017.8298650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique for non-stationary source separation is proposed for multiple-input multiple-output auto-regressive (MIMO-AR) mixtures. Hidden Markov Gaussian mixture model (HM-GMM) is employed in this paper to represent source model. Expectation-maximum algorithm is used to achieve MIMO-AR model identification, and then blind source separation (BSS) is achieved by matrix joint diagonalization. Simulation results show its effectiveness, not only for system identification, but also for BSS.\",\"PeriodicalId\":434246,\"journal\":{\"name\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIIS.2017.8298650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多输入多输出自回归(MIMO-AR)混合信号的非平稳源分离技术。本文采用隐马尔可夫高斯混合模型(HM-GMM)表示源模型。首先采用最大期望算法实现MIMO-AR模型辨识,然后通过矩阵联合对角化实现盲源分离。仿真结果表明了该方法的有效性,不仅适用于系统辨识,而且适用于BSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-stationary source separation and system identification for MIMO-AR mixtures using HM-GMM
A technique for non-stationary source separation is proposed for multiple-input multiple-output auto-regressive (MIMO-AR) mixtures. Hidden Markov Gaussian mixture model (HM-GMM) is employed in this paper to represent source model. Expectation-maximum algorithm is used to achieve MIMO-AR model identification, and then blind source separation (BSS) is achieved by matrix joint diagonalization. Simulation results show its effectiveness, not only for system identification, but also for BSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信