Y. Zheng, Hang Ma, Sven Koenig, Erik Kline, T. K. S. Kumar
{"title":"基于优先级的虚拟网络嵌入问题搜索","authors":"Y. Zheng, Hang Ma, Sven Koenig, Erik Kline, T. K. S. Kumar","doi":"10.1609/icaps.v33i1.27227","DOIUrl":null,"url":null,"abstract":"The Virtual Network Embedding (VNE) problem is a constrained optimization problem. It arises in the context of allocating resources on heterogeneous physical networks to provide end-to-end computing services. In this paper, we introduce a new solver, called VNE-PBS, that uses priority-based search (PBS) for solving the VNE problem. VNE-PBS uses a prioritized heuristic search algorithm that explores the space of all possible priority orderings using a systematic depth-first search. The solver is inspired by the success of PBS for the Multi-Agent Path Finding (MAPF) problem and the similarities between the VNE and MAPF problems. We show that VNE-PBS significantly outperforms competing methods on various benchmark instances for both the offline and online versions of the VNE problem.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Priority-Based Search for the Virtual Network Embedding Problem\",\"authors\":\"Y. Zheng, Hang Ma, Sven Koenig, Erik Kline, T. K. S. Kumar\",\"doi\":\"10.1609/icaps.v33i1.27227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Virtual Network Embedding (VNE) problem is a constrained optimization problem. It arises in the context of allocating resources on heterogeneous physical networks to provide end-to-end computing services. In this paper, we introduce a new solver, called VNE-PBS, that uses priority-based search (PBS) for solving the VNE problem. VNE-PBS uses a prioritized heuristic search algorithm that explores the space of all possible priority orderings using a systematic depth-first search. The solver is inspired by the success of PBS for the Multi-Agent Path Finding (MAPF) problem and the similarities between the VNE and MAPF problems. We show that VNE-PBS significantly outperforms competing methods on various benchmark instances for both the offline and online versions of the VNE problem.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Priority-Based Search for the Virtual Network Embedding Problem
The Virtual Network Embedding (VNE) problem is a constrained optimization problem. It arises in the context of allocating resources on heterogeneous physical networks to provide end-to-end computing services. In this paper, we introduce a new solver, called VNE-PBS, that uses priority-based search (PBS) for solving the VNE problem. VNE-PBS uses a prioritized heuristic search algorithm that explores the space of all possible priority orderings using a systematic depth-first search. The solver is inspired by the success of PBS for the Multi-Agent Path Finding (MAPF) problem and the similarities between the VNE and MAPF problems. We show that VNE-PBS significantly outperforms competing methods on various benchmark instances for both the offline and online versions of the VNE problem.