分散二元假设检验中的基本神经结构、操作和渐近性能准则

P. Papantoni-Kazakos, D. Kazakos
{"title":"分散二元假设检验中的基本神经结构、操作和渐近性能准则","authors":"P. Papantoni-Kazakos, D. Kazakos","doi":"10.1109/ICNN.1991.163375","DOIUrl":null,"url":null,"abstract":"Fundamental neural network structures in decentralized hypothesis testing are considered. For binary hypothesis testing, the basic neural operations are established, and the Neyman-Pearson criterion is utilized due to information theoretic arguments. Then, two fundamental neural structures are considered, and analyzed and compared in terms of asymptotic performance measures. In particular, the asymptotic relative efficiency performance measure is used to establish performance characteristics and tradeoffs in the two structures, for both parametrically and nonparametrically defined hypotheses. In the latter case, robust neural network structures are considered, and their superiority to parametric network structures is argued.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fundamental neural structures, operations, and asymptotic performance criteria in decentralized binary hypothesis testing\",\"authors\":\"P. Papantoni-Kazakos, D. Kazakos\",\"doi\":\"10.1109/ICNN.1991.163375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fundamental neural network structures in decentralized hypothesis testing are considered. For binary hypothesis testing, the basic neural operations are established, and the Neyman-Pearson criterion is utilized due to information theoretic arguments. Then, two fundamental neural structures are considered, and analyzed and compared in terms of asymptotic performance measures. In particular, the asymptotic relative efficiency performance measure is used to establish performance characteristics and tradeoffs in the two structures, for both parametrically and nonparametrically defined hypotheses. In the latter case, robust neural network structures are considered, and their superiority to parametric network structures is argued.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了分散假设检验中的基本神经网络结构。对于二元假设检验,建立了基本的神经运算,并基于信息理论的考虑,采用了Neyman-Pearson准则。然后,考虑了两种基本的神经网络结构,并根据渐近性能度量进行了分析和比较。特别是,对于参数和非参数定义的假设,使用渐近相对效率性能度量来建立两种结构的性能特征和权衡。在后一种情况下,考虑了鲁棒神经网络结构,并论证了其相对于参数网络结构的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental neural structures, operations, and asymptotic performance criteria in decentralized binary hypothesis testing
Fundamental neural network structures in decentralized hypothesis testing are considered. For binary hypothesis testing, the basic neural operations are established, and the Neyman-Pearson criterion is utilized due to information theoretic arguments. Then, two fundamental neural structures are considered, and analyzed and compared in terms of asymptotic performance measures. In particular, the asymptotic relative efficiency performance measure is used to establish performance characteristics and tradeoffs in the two structures, for both parametrically and nonparametrically defined hypotheses. In the latter case, robust neural network structures are considered, and their superiority to parametric network structures is argued.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信