易出错无线传感器网络中高效数据采集的参数化POMDP框架

S. Chobsri, Watinee Sumalai, W. Usaha
{"title":"易出错无线传感器网络中高效数据采集的参数化POMDP框架","authors":"S. Chobsri, Watinee Sumalai, W. Usaha","doi":"10.1109/ISWPC.2009.4800557","DOIUrl":null,"url":null,"abstract":"This paper proposes a data acquisition scheme which aims to satisfy probabilistic confidence requirements of the acquired data in an error prone wireless sensor networks (WSNs). Given a statistical model of real-world sensor data and a user's query, the aim of the scheme is to find a sensor selection scheme which best refines the query answer with acceptable confidence. Since most sensor readings are real-valued, we formulate the data acquisition problem as a parametric partially observable Markov decision process (PPOMDP). An existing tool used for solving PPOMDPs, called the fitted value iteration (FVI), is then applied to find a near-optimal sensor selection scheme. Numerical results show that the FVI scheme can achieve near-optimal average long-term rewards, and attain high average confidence levels when compared to other existing algorithms.","PeriodicalId":383593,"journal":{"name":"2009 4th International Symposium on Wireless Pervasive Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Parametric POMDP Framework for Efficient Data Acquisition in Error Prone Wireless Sensor Networks\",\"authors\":\"S. Chobsri, Watinee Sumalai, W. Usaha\",\"doi\":\"10.1109/ISWPC.2009.4800557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a data acquisition scheme which aims to satisfy probabilistic confidence requirements of the acquired data in an error prone wireless sensor networks (WSNs). Given a statistical model of real-world sensor data and a user's query, the aim of the scheme is to find a sensor selection scheme which best refines the query answer with acceptable confidence. Since most sensor readings are real-valued, we formulate the data acquisition problem as a parametric partially observable Markov decision process (PPOMDP). An existing tool used for solving PPOMDPs, called the fitted value iteration (FVI), is then applied to find a near-optimal sensor selection scheme. Numerical results show that the FVI scheme can achieve near-optimal average long-term rewards, and attain high average confidence levels when compared to other existing algorithms.\",\"PeriodicalId\":383593,\"journal\":{\"name\":\"2009 4th International Symposium on Wireless Pervasive Computing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Symposium on Wireless Pervasive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWPC.2009.4800557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Symposium on Wireless Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWPC.2009.4800557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对易出错无线传感器网络中采集数据的概率置信度要求,提出了一种数据采集方案。给定真实传感器数据的统计模型和用户的查询,该方案的目的是找到一个传感器选择方案,该方案可以在可接受的置信度下优化查询答案。由于大多数传感器读数是实值,我们将数据采集问题表述为参数部分可观察马尔可夫决策过程(PPOMDP)。现有的用于求解ppomdp的工具,称为拟合值迭代(FVI),然后应用于寻找接近最优的传感器选择方案。数值结果表明,与现有算法相比,FVI方案可以获得接近最优的平均长期回报,并获得较高的平均置信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parametric POMDP Framework for Efficient Data Acquisition in Error Prone Wireless Sensor Networks
This paper proposes a data acquisition scheme which aims to satisfy probabilistic confidence requirements of the acquired data in an error prone wireless sensor networks (WSNs). Given a statistical model of real-world sensor data and a user's query, the aim of the scheme is to find a sensor selection scheme which best refines the query answer with acceptable confidence. Since most sensor readings are real-valued, we formulate the data acquisition problem as a parametric partially observable Markov decision process (PPOMDP). An existing tool used for solving PPOMDPs, called the fitted value iteration (FVI), is then applied to find a near-optimal sensor selection scheme. Numerical results show that the FVI scheme can achieve near-optimal average long-term rewards, and attain high average confidence levels when compared to other existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信