{"title":"似然比方法和算法微分:快速二阶希腊文","authors":"Luca Capriotti","doi":"10.2139/ssrn.2508905","DOIUrl":null,"url":null,"abstract":"We show how Adjoint Algorithmic Differentiation can be combined with the so-called Pathwise Derivative and Likelihood Ratio Method to construct efficient Monte Carlo estimators of second order price sensitivities of derivative portfolios. We demonstrate with a numerical example how the proposed technique can be straightforwardly implemented to greatly reduce the computation time of second order risk.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Likelihood Ratio Method and Algorithmic Differentiation: Fast Second Order Greeks\",\"authors\":\"Luca Capriotti\",\"doi\":\"10.2139/ssrn.2508905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how Adjoint Algorithmic Differentiation can be combined with the so-called Pathwise Derivative and Likelihood Ratio Method to construct efficient Monte Carlo estimators of second order price sensitivities of derivative portfolios. We demonstrate with a numerical example how the proposed technique can be straightforwardly implemented to greatly reduce the computation time of second order risk.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2508905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2508905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Likelihood Ratio Method and Algorithmic Differentiation: Fast Second Order Greeks
We show how Adjoint Algorithmic Differentiation can be combined with the so-called Pathwise Derivative and Likelihood Ratio Method to construct efficient Monte Carlo estimators of second order price sensitivities of derivative portfolios. We demonstrate with a numerical example how the proposed technique can be straightforwardly implemented to greatly reduce the computation time of second order risk.