基于机器学习算法的FBC锅炉效率预测

Raunak Pawar, M. A. Khandekar, S. Agashe, Pratap Makwana
{"title":"基于机器学习算法的FBC锅炉效率预测","authors":"Raunak Pawar, M. A. Khandekar, S. Agashe, Pratap Makwana","doi":"10.1109/IPRECON55716.2022.10059501","DOIUrl":null,"url":null,"abstract":"It is now clear that a fluidized bed combustion boiler is a feasible choice with many benefits over a traditional firing system. These boilers burn coal, washery waste, rice husk, bagasse, and other agricultural wastes as fuels. Calculations of boiler efficiency using the conventional method is time-consuming and very expensive. The work presented in this paper deals with establishing the statistical model for boiler efficiency using boiler parameters. Different machine learning algorithm like, Multilinear regression, support vector regression, K-nearest neighbors and decision tree regression have been used to build the boiler efficiency model. K-nearest neighbors algorithm shows the best model accuracy. So we can predict Fluidized bed combustion boiler efficiency using real time boiler parameters.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of FBC Boiler Efficiency using Machine Learning Algorithm\",\"authors\":\"Raunak Pawar, M. A. Khandekar, S. Agashe, Pratap Makwana\",\"doi\":\"10.1109/IPRECON55716.2022.10059501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is now clear that a fluidized bed combustion boiler is a feasible choice with many benefits over a traditional firing system. These boilers burn coal, washery waste, rice husk, bagasse, and other agricultural wastes as fuels. Calculations of boiler efficiency using the conventional method is time-consuming and very expensive. The work presented in this paper deals with establishing the statistical model for boiler efficiency using boiler parameters. Different machine learning algorithm like, Multilinear regression, support vector regression, K-nearest neighbors and decision tree regression have been used to build the boiler efficiency model. K-nearest neighbors algorithm shows the best model accuracy. So we can predict Fluidized bed combustion boiler efficiency using real time boiler parameters.\",\"PeriodicalId\":407222,\"journal\":{\"name\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPRECON55716.2022.10059501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在很清楚,流化床燃烧锅炉是一个可行的选择,比传统的燃烧系统有许多好处。这些锅炉燃烧煤、洗涤废料、稻壳、甘蔗渣和其他农业废料作为燃料。用传统方法计算锅炉效率既费时又昂贵。本文的工作是利用锅炉参数建立锅炉效率的统计模型。不同的机器学习算法,如多元线性回归,支持向量回归,k近邻和决策树回归,已被用于建立锅炉效率模型。k近邻算法显示出最好的模型精度。因此,利用锅炉的实时参数可以预测流化床燃烧锅炉的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of FBC Boiler Efficiency using Machine Learning Algorithm
It is now clear that a fluidized bed combustion boiler is a feasible choice with many benefits over a traditional firing system. These boilers burn coal, washery waste, rice husk, bagasse, and other agricultural wastes as fuels. Calculations of boiler efficiency using the conventional method is time-consuming and very expensive. The work presented in this paper deals with establishing the statistical model for boiler efficiency using boiler parameters. Different machine learning algorithm like, Multilinear regression, support vector regression, K-nearest neighbors and decision tree regression have been used to build the boiler efficiency model. K-nearest neighbors algorithm shows the best model accuracy. So we can predict Fluidized bed combustion boiler efficiency using real time boiler parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信