{"title":"基于CUDA的步进分水岭算法分析","authors":"G. B. Vitor, A. Körbes, R. Lotufo, J. V. Ferreira","doi":"10.4018/jncr.2010100102","DOIUrl":null,"url":null,"abstract":"This paper proposes and develops a parallel algorithm for the watershed transform, with application on graphics hardware. The existing proposals are discussed and its aspects briefly analysed. The algorithm is proposed as a procedure of four steps, where each step performs a task using different approaches inspired by existing techniques. The algorithm is implemented using the CUDA libraries and its performance is measured on the GPU and compared to a sequential algorithm running on the CPU, achieving an average speed of twice the execution time of the sequential approach. This work improves on previous results of hybrid approaches and parallel algorithms with many steps of synchronisation and iterations between CPU and GPU.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analysis of a Step-Based Watershed Algorithm Using CUDA\",\"authors\":\"G. B. Vitor, A. Körbes, R. Lotufo, J. V. Ferreira\",\"doi\":\"10.4018/jncr.2010100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes and develops a parallel algorithm for the watershed transform, with application on graphics hardware. The existing proposals are discussed and its aspects briefly analysed. The algorithm is proposed as a procedure of four steps, where each step performs a task using different approaches inspired by existing techniques. The algorithm is implemented using the CUDA libraries and its performance is measured on the GPU and compared to a sequential algorithm running on the CPU, achieving an average speed of twice the execution time of the sequential approach. This work improves on previous results of hybrid approaches and parallel algorithms with many steps of synchronisation and iterations between CPU and GPU.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jncr.2010100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2010100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of a Step-Based Watershed Algorithm Using CUDA
This paper proposes and develops a parallel algorithm for the watershed transform, with application on graphics hardware. The existing proposals are discussed and its aspects briefly analysed. The algorithm is proposed as a procedure of four steps, where each step performs a task using different approaches inspired by existing techniques. The algorithm is implemented using the CUDA libraries and its performance is measured on the GPU and compared to a sequential algorithm running on the CPU, achieving an average speed of twice the execution time of the sequential approach. This work improves on previous results of hybrid approaches and parallel algorithms with many steps of synchronisation and iterations between CPU and GPU.