使用对象安排优化的自动任务规划

Mincheul Kang, Youngsun Kwon, Sung-eui Yoon
{"title":"使用对象安排优化的自动任务规划","authors":"Mincheul Kang, Youngsun Kwon, Sung-eui Yoon","doi":"10.1109/URAI.2018.8442210","DOIUrl":null,"url":null,"abstract":"We present a method enabling a robot to automatically arrange objects using task and motion planning. Given an input scene consisting of cluttered objects, our method first constructs a target layout of objects as a guidance to the robot for arranging them. For constructing the layout, we use positive examples and pre-extract hierarchical, spatial and pairwise relationships between objects, to understand the user preference on arranging objects. Our method then enables a robot to arrange input objects to reach their target configurations using any task and motion planner. To efficiently arrange the objects, we also propose a priority layer that decides an order of arranging objects to take a small amount of actions. This is achieved by utilizing a dependency graph between objects. We test our method in three different scenes with varying numbers of objects, and apply our method to two well-known task and motion planners with the virtual PR2 robot. We demonstrate that we can use the robot to automatically arrange objects, and show that our priority layer reduces the total running time up to 2.15 times in those tested planners.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automated task planning using object arrangement optimization\",\"authors\":\"Mincheul Kang, Youngsun Kwon, Sung-eui Yoon\",\"doi\":\"10.1109/URAI.2018.8442210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method enabling a robot to automatically arrange objects using task and motion planning. Given an input scene consisting of cluttered objects, our method first constructs a target layout of objects as a guidance to the robot for arranging them. For constructing the layout, we use positive examples and pre-extract hierarchical, spatial and pairwise relationships between objects, to understand the user preference on arranging objects. Our method then enables a robot to arrange input objects to reach their target configurations using any task and motion planner. To efficiently arrange the objects, we also propose a priority layer that decides an order of arranging objects to take a small amount of actions. This is achieved by utilizing a dependency graph between objects. We test our method in three different scenes with varying numbers of objects, and apply our method to two well-known task and motion planners with the virtual PR2 robot. We demonstrate that we can use the robot to automatically arrange objects, and show that our priority layer reduces the total running time up to 2.15 times in those tested planners.\",\"PeriodicalId\":347727,\"journal\":{\"name\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2018.8442210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8442210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种利用任务和运动规划使机器人能够自动排列物体的方法。给定一个由杂乱物体组成的输入场景,我们的方法首先构建物体的目标布局,作为机器人排列它们的指导。为了构建布局,我们使用正例并预先提取对象之间的层次关系、空间关系和成对关系,以了解用户对排列对象的偏好。然后,我们的方法使机器人能够使用任何任务和运动规划器来安排输入对象以达到其目标配置。为了有效地安排对象,我们还提出了一个优先级层来决定安排对象的顺序,以采取少量的行动。这是通过利用对象之间的依赖关系图来实现的。我们在三个不同的场景中测试了我们的方法,并将我们的方法应用于两个著名的任务和运动规划器与虚拟PR2机器人。我们证明了我们可以使用机器人自动排列物体,并表明我们的优先级层在测试的计划器中减少了总计2.15倍的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated task planning using object arrangement optimization
We present a method enabling a robot to automatically arrange objects using task and motion planning. Given an input scene consisting of cluttered objects, our method first constructs a target layout of objects as a guidance to the robot for arranging them. For constructing the layout, we use positive examples and pre-extract hierarchical, spatial and pairwise relationships between objects, to understand the user preference on arranging objects. Our method then enables a robot to arrange input objects to reach their target configurations using any task and motion planner. To efficiently arrange the objects, we also propose a priority layer that decides an order of arranging objects to take a small amount of actions. This is achieved by utilizing a dependency graph between objects. We test our method in three different scenes with varying numbers of objects, and apply our method to two well-known task and motion planners with the virtual PR2 robot. We demonstrate that we can use the robot to automatically arrange objects, and show that our priority layer reduces the total running time up to 2.15 times in those tested planners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信