基于高阶谱的心音图分析与分类

M. Shen, Lisha Sun
{"title":"基于高阶谱的心音图分析与分类","authors":"M. Shen, Lisha Sun","doi":"10.1109/HOST.1997.613481","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of a non-Gaussian AR model and parametric bispectral estimation in analyzing normal and pathological heart sound signals. The non-Gaussian AR model of PCG signals (phonocardiogram) is used to detect quadratic nonlinear interactions and to classify the two patterns of phonocardiograms in terms of the parametric bispectral estimate. The bispectral cross-correlation is proposed for the order determination of the model. Real PCG data are implemented to show that the quadratic nonlinearity exists in both normal and clinical heart sounds. It was found that parametric bispectral techniques are effective and useful tools in analyzing PCG and other biomedical signals, such as EMG, ECG and EEG.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The analysis and classification of phonocardiogram based on higher-order spectra\",\"authors\":\"M. Shen, Lisha Sun\",\"doi\":\"10.1109/HOST.1997.613481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of a non-Gaussian AR model and parametric bispectral estimation in analyzing normal and pathological heart sound signals. The non-Gaussian AR model of PCG signals (phonocardiogram) is used to detect quadratic nonlinear interactions and to classify the two patterns of phonocardiograms in terms of the parametric bispectral estimate. The bispectral cross-correlation is proposed for the order determination of the model. Real PCG data are implemented to show that the quadratic nonlinearity exists in both normal and clinical heart sounds. It was found that parametric bispectral techniques are effective and useful tools in analyzing PCG and other biomedical signals, such as EMG, ECG and EEG.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文研究了非高斯AR模型和参数双谱估计在分析正常和病理心音信号中的应用。利用心音图信号的非高斯AR模型检测二次非线性相互作用,并根据参数双谱估计对心音图的两种模式进行分类。提出了双谱互相关法来确定模型的阶数。通过对实际心音心电图数据的分析,表明正常心音和临床心音均存在二次非线性。研究发现,参数双谱技术是分析PCG和其他生物医学信号(如肌电、心电和脑电图)的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The analysis and classification of phonocardiogram based on higher-order spectra
This paper investigates the application of a non-Gaussian AR model and parametric bispectral estimation in analyzing normal and pathological heart sound signals. The non-Gaussian AR model of PCG signals (phonocardiogram) is used to detect quadratic nonlinear interactions and to classify the two patterns of phonocardiograms in terms of the parametric bispectral estimate. The bispectral cross-correlation is proposed for the order determination of the model. Real PCG data are implemented to show that the quadratic nonlinearity exists in both normal and clinical heart sounds. It was found that parametric bispectral techniques are effective and useful tools in analyzing PCG and other biomedical signals, such as EMG, ECG and EEG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信