学习用模糊逻辑对闭域问题的答案进行排序

Marco Pota, M. Esposito, G. Pietro
{"title":"学习用模糊逻辑对闭域问题的答案进行排序","authors":"Marco Pota, M. Esposito, G. Pietro","doi":"10.1109/FUZZ-IEEE.2017.8015745","DOIUrl":null,"url":null,"abstract":"Question answering (QA) is a challenging task and has received considerable attention in the last years. Answer selection among candidate answers is one of the main phases for QA and the best answer to be returned is determined in this phase. A common approach consists in considering the selection of the final answer(s) as a ranking problem. So far, different methods have been proposed, mainly oriented to produce a single best ranking model operating in the same way on all the question types. Differently, this paper proposes a fuzzy approach for ranking and selecting the correct answer among a list of candidates in a state-of-the-art QA system operating with factoid and description questions on Italian corpora pertaining a closed domain. Starting from the consideration that this ranking problem can be reduced to a classification one, the proposed approach is based on the Likelihood-Fuzzy Analysis (LFA), applied in this case for mining fuzzy rule-based models able to discern correct (True) from incorrect answers (False). Such fuzzy models are mined as specifically tailored to each question type, and, thus, can be individually applied to produce a more robust and accurate final ranking. An experimental session over a collection of questions pertaining the Cultural Heritage domain, using a manually annotated gold-standard dataset, shows that considering specific fuzzy ranking models for each question type improves the accuracy of the best answer returned back to the user.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Learning to rank answers to closed-domain questions by using fuzzy logic\",\"authors\":\"Marco Pota, M. Esposito, G. Pietro\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Question answering (QA) is a challenging task and has received considerable attention in the last years. Answer selection among candidate answers is one of the main phases for QA and the best answer to be returned is determined in this phase. A common approach consists in considering the selection of the final answer(s) as a ranking problem. So far, different methods have been proposed, mainly oriented to produce a single best ranking model operating in the same way on all the question types. Differently, this paper proposes a fuzzy approach for ranking and selecting the correct answer among a list of candidates in a state-of-the-art QA system operating with factoid and description questions on Italian corpora pertaining a closed domain. Starting from the consideration that this ranking problem can be reduced to a classification one, the proposed approach is based on the Likelihood-Fuzzy Analysis (LFA), applied in this case for mining fuzzy rule-based models able to discern correct (True) from incorrect answers (False). Such fuzzy models are mined as specifically tailored to each question type, and, thus, can be individually applied to produce a more robust and accurate final ranking. An experimental session over a collection of questions pertaining the Cultural Heritage domain, using a manually annotated gold-standard dataset, shows that considering specific fuzzy ranking models for each question type improves the accuracy of the best answer returned back to the user.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

问答(QA)是一项具有挑战性的任务,在过去的几年里受到了相当大的关注。从候选答案中选择答案是QA的主要阶段之一,要返回的最佳答案是在这个阶段确定的。一种常见的方法是将最终答案的选择视为排序问题。到目前为止,已经提出了不同的方法,主要是为了产生一个在所有问题类型上以相同方式运行的单一最佳排名模型。不同的是,本文提出了一种模糊方法,用于在一个最先进的QA系统中对一个封闭领域的意大利语语料库上的事实和描述问题进行排序和选择正确答案。考虑到该排序问题可以简化为分类问题,所提出的方法基于似然模糊分析(LFA),在这种情况下,该方法用于挖掘能够区分正确(True)和错误答案(False)的基于模糊规则的模型。这种模糊模型是专门为每个问题类型量身定制的,因此,可以单独应用于产生更健壮和准确的最终排名。在一组有关文化遗产领域的问题上进行的实验会话,使用手动注释的金标准数据集,表明考虑每种问题类型的特定模糊排名模型提高了返回给用户的最佳答案的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to rank answers to closed-domain questions by using fuzzy logic
Question answering (QA) is a challenging task and has received considerable attention in the last years. Answer selection among candidate answers is one of the main phases for QA and the best answer to be returned is determined in this phase. A common approach consists in considering the selection of the final answer(s) as a ranking problem. So far, different methods have been proposed, mainly oriented to produce a single best ranking model operating in the same way on all the question types. Differently, this paper proposes a fuzzy approach for ranking and selecting the correct answer among a list of candidates in a state-of-the-art QA system operating with factoid and description questions on Italian corpora pertaining a closed domain. Starting from the consideration that this ranking problem can be reduced to a classification one, the proposed approach is based on the Likelihood-Fuzzy Analysis (LFA), applied in this case for mining fuzzy rule-based models able to discern correct (True) from incorrect answers (False). Such fuzzy models are mined as specifically tailored to each question type, and, thus, can be individually applied to produce a more robust and accurate final ranking. An experimental session over a collection of questions pertaining the Cultural Heritage domain, using a manually annotated gold-standard dataset, shows that considering specific fuzzy ranking models for each question type improves the accuracy of the best answer returned back to the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信