更好的深度下界:XOR-KRW猜想

Ivan Mihajlin, A. Smal
{"title":"更好的深度下界:XOR-KRW猜想","authors":"Ivan Mihajlin, A. Smal","doi":"10.4230/LIPIcs.CCC.2021.38","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the Karchmer-Raz-Wigderson conjecture [10]. This relaxation is still strong enough to imply P ⊈ NC1 if proven. We also present a weaker version of this conjecture that might be used for breaking n3 lower bound for De Morgan formulas. Our study of this conjecture allows us to partially answer an open question stated in [5] regarding the composition of the universal relation with a function. To be more precise, we prove that there exists a function g such that the composition of the universal relation with g is significantly harder than just a universal relation. The fact that we can only prove the existence of g is an inherent feature of our approach. The paper's main technical contribution is a new approach to lower bounds for multiplexer-type relations based on the non-deterministic hardness of non-equality and a new method of converting lower bounds for multiplexer-type relations into lower bounds against some function. In order to do this, we develop techniques to lower bound communication complexity in half-duplex and partially half-duplex communication models.","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"4 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Toward better depth lower bounds: the XOR-KRW conjecture\",\"authors\":\"Ivan Mihajlin, A. Smal\",\"doi\":\"10.4230/LIPIcs.CCC.2021.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the Karchmer-Raz-Wigderson conjecture [10]. This relaxation is still strong enough to imply P ⊈ NC1 if proven. We also present a weaker version of this conjecture that might be used for breaking n3 lower bound for De Morgan formulas. Our study of this conjecture allows us to partially answer an open question stated in [5] regarding the composition of the universal relation with a function. To be more precise, we prove that there exists a function g such that the composition of the universal relation with g is significantly harder than just a universal relation. The fact that we can only prove the existence of g is an inherent feature of our approach. The paper's main technical contribution is a new approach to lower bounds for multiplexer-type relations based on the non-deterministic hardness of non-equality and a new method of converting lower bounds for multiplexer-type relations into lower bounds against some function. In order to do this, we develop techniques to lower bound communication complexity in half-duplex and partially half-duplex communication models.\",\"PeriodicalId\":336911,\"journal\":{\"name\":\"Proceedings of the 36th Computational Complexity Conference\",\"volume\":\"4 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th Computational Complexity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2021.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一个新的猜想,XOR-KRW猜想,它是Karchmer-Raz-Wigderson猜想的一个松弛[10]。如果得到证明,这种弛豫仍然足够强,可以推导出P - NC1。我们还提出了这个猜想的一个较弱的版本,它可以用于打破德摩根公式的n3下界。我们对这个猜想的研究使我们能够部分地回答[5]中提出的关于泛关系与函数的组合的开放性问题。更确切地说,我们证明了存在一个函数g,使得用g组合全称关系比仅仅是一个全称关系要困难得多。我们只能证明g的存在这一事实是我们方法的一个固有特征。本文的主要技术贡献是基于非相等性的不确定性硬度,提出了求解多工型关系下界的新方法,以及将多工型关系下界转化为针对某函数的下界的新方法。为此,我们开发了在半双工和部分半双工通信模型中降低通信复杂度的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward better depth lower bounds: the XOR-KRW conjecture
In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the Karchmer-Raz-Wigderson conjecture [10]. This relaxation is still strong enough to imply P ⊈ NC1 if proven. We also present a weaker version of this conjecture that might be used for breaking n3 lower bound for De Morgan formulas. Our study of this conjecture allows us to partially answer an open question stated in [5] regarding the composition of the universal relation with a function. To be more precise, we prove that there exists a function g such that the composition of the universal relation with g is significantly harder than just a universal relation. The fact that we can only prove the existence of g is an inherent feature of our approach. The paper's main technical contribution is a new approach to lower bounds for multiplexer-type relations based on the non-deterministic hardness of non-equality and a new method of converting lower bounds for multiplexer-type relations into lower bounds against some function. In order to do this, we develop techniques to lower bound communication complexity in half-duplex and partially half-duplex communication models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信