David Elsweiler, D. Losada, José Carlos Toucedo, R. Fernández
{"title":"用用户研究数据播种模拟查询,用于个人搜索评估","authors":"David Elsweiler, D. Losada, José Carlos Toucedo, R. Fernández","doi":"10.1145/2009916.2009924","DOIUrl":null,"url":null,"abstract":"In this paper we perform a lab-based user study (n=21) of email re-finding behaviour, examining how the characteristics of submitted queries change in different situations. A number of logistic regression models are developed on the query data to explore the relationship between user- and contextual- variables and query characteristics including length, field submitted to and use of named entities. We reveal several interesting trends and use the findings to seed a simulated evaluation of various retrieval models. Not only is this an enhancement of existing evaluation methods for Personal Search, but the results show that different models are more effective in different situations, which has implications both for the design of email search tools and for the way algorithms for Personal Search are evaluated.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Seeding simulated queries with user-study data for personal search evaluation\",\"authors\":\"David Elsweiler, D. Losada, José Carlos Toucedo, R. Fernández\",\"doi\":\"10.1145/2009916.2009924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we perform a lab-based user study (n=21) of email re-finding behaviour, examining how the characteristics of submitted queries change in different situations. A number of logistic regression models are developed on the query data to explore the relationship between user- and contextual- variables and query characteristics including length, field submitted to and use of named entities. We reveal several interesting trends and use the findings to seed a simulated evaluation of various retrieval models. Not only is this an enhancement of existing evaluation methods for Personal Search, but the results show that different models are more effective in different situations, which has implications both for the design of email search tools and for the way algorithms for Personal Search are evaluated.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2009924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seeding simulated queries with user-study data for personal search evaluation
In this paper we perform a lab-based user study (n=21) of email re-finding behaviour, examining how the characteristics of submitted queries change in different situations. A number of logistic regression models are developed on the query data to explore the relationship between user- and contextual- variables and query characteristics including length, field submitted to and use of named entities. We reveal several interesting trends and use the findings to seed a simulated evaluation of various retrieval models. Not only is this an enhancement of existing evaluation methods for Personal Search, but the results show that different models are more effective in different situations, which has implications both for the design of email search tools and for the way algorithms for Personal Search are evaluated.