Y. Zhang, Stacey Markovic, Inbal Sapir, R. Wagenaar, T. Little
{"title":"基于可穿戴三轴加速度计和陀螺仪的连续功能活动监测","authors":"Y. Zhang, Stacey Markovic, Inbal Sapir, R. Wagenaar, T. Little","doi":"10.4108/ICST.PERVASIVEHEALTH.2011.245966","DOIUrl":null,"url":null,"abstract":"Given the growing number of elderly people and patients diagnosed with Parkinson's disease, monitoring functional activities using wearable wireless sensors can be used to promote the Quality of Life and healthier life styles. We propose a novel and practical solution using three small wearable wireless Functional Activity Monitor (FAM) sensors and a smartphone to store, transmit, analyze and update data. Three sensors, each composed of a tri-axial accelerometer and a tri-axial gyroscope, are attached to the chest and both thighs. A computationally efficient signal processing algorithm is designed to accurately measure tilting angles. A continuous activity recognition algorithm is developed using a decision tree based on time series data and spectrum analysis; this algorithm can identify activities of daily life in three general categories: (1) postures such as standing, sitting, and lying; (2) locomotion such as walking; and (3) transitions such as sit-to-stand and stand-to-sit. The results show an accurate angle measurement compared to the motion capture system Optotrak 3020 and a reliable detection of all activities with sensitivity at least 96.2% compared to video recordings.","PeriodicalId":444978,"journal":{"name":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope\",\"authors\":\"Y. Zhang, Stacey Markovic, Inbal Sapir, R. Wagenaar, T. Little\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2011.245966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the growing number of elderly people and patients diagnosed with Parkinson's disease, monitoring functional activities using wearable wireless sensors can be used to promote the Quality of Life and healthier life styles. We propose a novel and practical solution using three small wearable wireless Functional Activity Monitor (FAM) sensors and a smartphone to store, transmit, analyze and update data. Three sensors, each composed of a tri-axial accelerometer and a tri-axial gyroscope, are attached to the chest and both thighs. A computationally efficient signal processing algorithm is designed to accurately measure tilting angles. A continuous activity recognition algorithm is developed using a decision tree based on time series data and spectrum analysis; this algorithm can identify activities of daily life in three general categories: (1) postures such as standing, sitting, and lying; (2) locomotion such as walking; and (3) transitions such as sit-to-stand and stand-to-sit. The results show an accurate angle measurement compared to the motion capture system Optotrak 3020 and a reliable detection of all activities with sensitivity at least 96.2% compared to video recordings.\",\"PeriodicalId\":444978,\"journal\":{\"name\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.245966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.245966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope
Given the growing number of elderly people and patients diagnosed with Parkinson's disease, monitoring functional activities using wearable wireless sensors can be used to promote the Quality of Life and healthier life styles. We propose a novel and practical solution using three small wearable wireless Functional Activity Monitor (FAM) sensors and a smartphone to store, transmit, analyze and update data. Three sensors, each composed of a tri-axial accelerometer and a tri-axial gyroscope, are attached to the chest and both thighs. A computationally efficient signal processing algorithm is designed to accurately measure tilting angles. A continuous activity recognition algorithm is developed using a decision tree based on time series data and spectrum analysis; this algorithm can identify activities of daily life in three general categories: (1) postures such as standing, sitting, and lying; (2) locomotion such as walking; and (3) transitions such as sit-to-stand and stand-to-sit. The results show an accurate angle measurement compared to the motion capture system Optotrak 3020 and a reliable detection of all activities with sensitivity at least 96.2% compared to video recordings.