{"title":"中压直流电力系统对接地故障和负增量阻抗的保护","authors":"U. Ghisla, I. Kondratiev, R. Dougal","doi":"10.1109/SECON.2010.5453874","DOIUrl":null,"url":null,"abstract":"Widespread concern about how to protect DC power distribution systems against high fault currents, and how to compensate for instabilities brought on by constant power load characteristics, has prompted us to develop a new approach for protecting these systems. Our approach employs a compact multiple switching topology converter, which fulfills three functions: it limits the line current to a predetermined value (which could be dynamically set); it works as buffer during short-duration faults on the power bus; and it compensates load instabilities that could arise due to the constant power characteristic of a load. The structure of the protection circuit, its positioning in the distribution network, its possible configurations, control strategies, and parameters selection will all be shown. Analysis of the performances and feasibility of the approach will be presented.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Protection of medium voltage DC power systems against ground faults and negative incremental impedances\",\"authors\":\"U. Ghisla, I. Kondratiev, R. Dougal\",\"doi\":\"10.1109/SECON.2010.5453874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widespread concern about how to protect DC power distribution systems against high fault currents, and how to compensate for instabilities brought on by constant power load characteristics, has prompted us to develop a new approach for protecting these systems. Our approach employs a compact multiple switching topology converter, which fulfills three functions: it limits the line current to a predetermined value (which could be dynamically set); it works as buffer during short-duration faults on the power bus; and it compensates load instabilities that could arise due to the constant power characteristic of a load. The structure of the protection circuit, its positioning in the distribution network, its possible configurations, control strategies, and parameters selection will all be shown. Analysis of the performances and feasibility of the approach will be presented.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protection of medium voltage DC power systems against ground faults and negative incremental impedances
Widespread concern about how to protect DC power distribution systems against high fault currents, and how to compensate for instabilities brought on by constant power load characteristics, has prompted us to develop a new approach for protecting these systems. Our approach employs a compact multiple switching topology converter, which fulfills three functions: it limits the line current to a predetermined value (which could be dynamically set); it works as buffer during short-duration faults on the power bus; and it compensates load instabilities that could arise due to the constant power characteristic of a load. The structure of the protection circuit, its positioning in the distribution network, its possible configurations, control strategies, and parameters selection will all be shown. Analysis of the performances and feasibility of the approach will be presented.