钟摆型方程绝热极限的类wkb方法

Andrey V. Ivanov
{"title":"钟摆型方程绝热极限的类wkb方法","authors":"Andrey V. Ivanov","doi":"10.1109/DD.2000.902355","DOIUrl":null,"url":null,"abstract":"We consider the ordinary differential equation of the second order x/spl uml/+/spl psi/(/spl epsi/t) sin(x-/spl phi/(/spl epsi/t))=0 with the coefficients /spl psi/ and /spl phi/ depending slowly on time. By using a Wentzel-Kramers-Brillouin (WKB)-like method we construct two asymptotic series for a general solution of the equation in the limit /spl epsi//spl rarr/0 (adiabatic limit). One of them is true when the variable t is far from the zeroes of the coefficient /spl psi/ and the other one is valid in the neighborhoods of these these zeroes.","PeriodicalId":184684,"journal":{"name":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WKB-like method for the adiabatic limit of a pendulum type equation\",\"authors\":\"Andrey V. Ivanov\",\"doi\":\"10.1109/DD.2000.902355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the ordinary differential equation of the second order x/spl uml/+/spl psi/(/spl epsi/t) sin(x-/spl phi/(/spl epsi/t))=0 with the coefficients /spl psi/ and /spl phi/ depending slowly on time. By using a Wentzel-Kramers-Brillouin (WKB)-like method we construct two asymptotic series for a general solution of the equation in the limit /spl epsi//spl rarr/0 (adiabatic limit). One of them is true when the variable t is far from the zeroes of the coefficient /spl psi/ and the other one is valid in the neighborhoods of these these zeroes.\",\"PeriodicalId\":184684,\"journal\":{\"name\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2000.902355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2000.902355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二阶x/spl uml/+/spl psi/(/spl epsi/t) sin(x-/spl phi/(/spl epsi/t))=0的常微分方程,系数/spl psi/和/spl phi/随时间缓慢变化。利用WKB类方法构造了方程在极限/spl epsi//spl rarr/0(绝热极限)下的通解的两个渐近级数。其中一个在变量t远离系数/spl /时成立另一个在这些0的邻域内成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WKB-like method for the adiabatic limit of a pendulum type equation
We consider the ordinary differential equation of the second order x/spl uml/+/spl psi/(/spl epsi/t) sin(x-/spl phi/(/spl epsi/t))=0 with the coefficients /spl psi/ and /spl phi/ depending slowly on time. By using a Wentzel-Kramers-Brillouin (WKB)-like method we construct two asymptotic series for a general solution of the equation in the limit /spl epsi//spl rarr/0 (adiabatic limit). One of them is true when the variable t is far from the zeroes of the coefficient /spl psi/ and the other one is valid in the neighborhoods of these these zeroes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信