{"title":"基于隐马尔可夫模型的智能手机恶意软件检测","authors":"Kejun Xin, Gang Li, Zhongyuan Qin, Qunfang Zhang","doi":"10.1109/MINES.2012.134","DOIUrl":null,"url":null,"abstract":"In recent years, smart phone technology is becoming increasingly popular. The dangers of mobile phone malwares are becoming more and more serious. In this paper we present a new mobile smartphone malware detection scheme based on Hidden Markov Model (HMM) which is different from the traditional signature scanning methods. Firstly, we monitor the key press and system function call sequence, and take the key press as hidden state. After decoding HMM model, abnormal process can be detected using the matching rate of HMM output to the actual key press sequence. The experimental results demonstrate that the proposed method can effectively detect mobile malwares.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Malware Detection in Smartphone Using Hidden Markov Model\",\"authors\":\"Kejun Xin, Gang Li, Zhongyuan Qin, Qunfang Zhang\",\"doi\":\"10.1109/MINES.2012.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, smart phone technology is becoming increasingly popular. The dangers of mobile phone malwares are becoming more and more serious. In this paper we present a new mobile smartphone malware detection scheme based on Hidden Markov Model (HMM) which is different from the traditional signature scanning methods. Firstly, we monitor the key press and system function call sequence, and take the key press as hidden state. After decoding HMM model, abnormal process can be detected using the matching rate of HMM output to the actual key press sequence. The experimental results demonstrate that the proposed method can effectively detect mobile malwares.\",\"PeriodicalId\":208089,\"journal\":{\"name\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MINES.2012.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malware Detection in Smartphone Using Hidden Markov Model
In recent years, smart phone technology is becoming increasingly popular. The dangers of mobile phone malwares are becoming more and more serious. In this paper we present a new mobile smartphone malware detection scheme based on Hidden Markov Model (HMM) which is different from the traditional signature scanning methods. Firstly, we monitor the key press and system function call sequence, and take the key press as hidden state. After decoding HMM model, abnormal process can be detected using the matching rate of HMM output to the actual key press sequence. The experimental results demonstrate that the proposed method can effectively detect mobile malwares.