多视图半监督判别分析

Xuesong Yin, Xiaodong Chen, Xiaofang Ruan, Yarong Huang
{"title":"多视图半监督判别分析","authors":"Xuesong Yin, Xiaodong Chen, Xiaofang Ruan, Yarong Huang","doi":"10.1109/ACPR.2011.6166562","DOIUrl":null,"url":null,"abstract":"Beyond conventional semi-supervised dimensionality reduction methods which data are represented in a single vector or graph space, multiple view semi-supervised ones are to learn a hidden consensus pattern from multiple representations of multiple view data together with some domain knowledge. Under multiple view settings, we propose a new Multiple view Semi-supervised Discriminant Analysis (MSDA). Specifically, the labeled data are used to infer the discriminant structure in each view. Simultaneously, all the data, including the labeled and the unlabeled instances, are used to discover the intrinsic geometrical structure in each view. Thus, we can learn an optimal pattern from the multiple patterns of multiple representations with serial combination after getting the projection of each view. Experiments carried out on real-world data sets by MSDA show a clear improvement over the results of representative dimensionality reduction algorithms.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple view semi-supervised discriminant analysis\",\"authors\":\"Xuesong Yin, Xiaodong Chen, Xiaofang Ruan, Yarong Huang\",\"doi\":\"10.1109/ACPR.2011.6166562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beyond conventional semi-supervised dimensionality reduction methods which data are represented in a single vector or graph space, multiple view semi-supervised ones are to learn a hidden consensus pattern from multiple representations of multiple view data together with some domain knowledge. Under multiple view settings, we propose a new Multiple view Semi-supervised Discriminant Analysis (MSDA). Specifically, the labeled data are used to infer the discriminant structure in each view. Simultaneously, all the data, including the labeled and the unlabeled instances, are used to discover the intrinsic geometrical structure in each view. Thus, we can learn an optimal pattern from the multiple patterns of multiple representations with serial combination after getting the projection of each view. Experiments carried out on real-world data sets by MSDA show a clear improvement over the results of representative dimensionality reduction algorithms.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的半监督降维方法是将数据表示在单个向量或图空间中,而多视图半监督降维方法则是从多视图数据的多个表示中学习隐藏的一致模式,并结合一些领域知识。在多视图设置下,我们提出了一种新的多视图半监督判别分析(MSDA)。具体来说,标记的数据用于推断每个视图中的判别结构。同时,利用所有的数据,包括标记和未标记的实例,来发现每个视图的内在几何结构。因此,在得到每个视图的投影后,我们可以从多个表示的多个模式中学习到一个最优模式。在实际数据集上进行的实验表明,MSDA比代表性降维算法的结果有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple view semi-supervised discriminant analysis
Beyond conventional semi-supervised dimensionality reduction methods which data are represented in a single vector or graph space, multiple view semi-supervised ones are to learn a hidden consensus pattern from multiple representations of multiple view data together with some domain knowledge. Under multiple view settings, we propose a new Multiple view Semi-supervised Discriminant Analysis (MSDA). Specifically, the labeled data are used to infer the discriminant structure in each view. Simultaneously, all the data, including the labeled and the unlabeled instances, are used to discover the intrinsic geometrical structure in each view. Thus, we can learn an optimal pattern from the multiple patterns of multiple representations with serial combination after getting the projection of each view. Experiments carried out on real-world data sets by MSDA show a clear improvement over the results of representative dimensionality reduction algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信