{"title":"基于博弈论方法的LoRa网络扩展因子分配","authors":"A. Tolio, Davide Boem, Thomas Marchioro, L. Badia","doi":"10.1109/icc40277.2020.9149174","DOIUrl":null,"url":null,"abstract":"LoRa is a low-power wide-area network solution that is recently gaining popularity in the context of the Internet of Things due to its ability to handle massive number of devices. One of the main challenges faced by LoRa implementations is the allocation of Spreading Factors to the devices. While the assignment of these parameters is virtually simple to execute, scalability and complexity issues hint at its implementation through a game theoretic approach. This would offer the advantage of being readily implementable in vast networks of devices with limited hardware capabilities. Hence, we formulate the SF allocation problem as a Bayesian game, of which we compute the Bayesian Nash equilibria. We also implement the procedure in the ns- 3 network simulator and evaluate the resulting performance, showing that our approach is scalable and robust, and also offers room for improvement with respect to existing approaches.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spreading Factor Allocation in LoRa Networks through a Game Theoretic Approach\",\"authors\":\"A. Tolio, Davide Boem, Thomas Marchioro, L. Badia\",\"doi\":\"10.1109/icc40277.2020.9149174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LoRa is a low-power wide-area network solution that is recently gaining popularity in the context of the Internet of Things due to its ability to handle massive number of devices. One of the main challenges faced by LoRa implementations is the allocation of Spreading Factors to the devices. While the assignment of these parameters is virtually simple to execute, scalability and complexity issues hint at its implementation through a game theoretic approach. This would offer the advantage of being readily implementable in vast networks of devices with limited hardware capabilities. Hence, we formulate the SF allocation problem as a Bayesian game, of which we compute the Bayesian Nash equilibria. We also implement the procedure in the ns- 3 network simulator and evaluate the resulting performance, showing that our approach is scalable and robust, and also offers room for improvement with respect to existing approaches.\",\"PeriodicalId\":106560,\"journal\":{\"name\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icc40277.2020.9149174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icc40277.2020.9149174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spreading Factor Allocation in LoRa Networks through a Game Theoretic Approach
LoRa is a low-power wide-area network solution that is recently gaining popularity in the context of the Internet of Things due to its ability to handle massive number of devices. One of the main challenges faced by LoRa implementations is the allocation of Spreading Factors to the devices. While the assignment of these parameters is virtually simple to execute, scalability and complexity issues hint at its implementation through a game theoretic approach. This would offer the advantage of being readily implementable in vast networks of devices with limited hardware capabilities. Hence, we formulate the SF allocation problem as a Bayesian game, of which we compute the Bayesian Nash equilibria. We also implement the procedure in the ns- 3 network simulator and evaluate the resulting performance, showing that our approach is scalable and robust, and also offers room for improvement with respect to existing approaches.