基于cnn的无线信号自动调制识别

Kaichong Ma, Yongbin Zhou, Jianyun Chen
{"title":"基于cnn的无线信号自动调制识别","authors":"Kaichong Ma, Yongbin Zhou, Jianyun Chen","doi":"10.1109/ICISCAE51034.2020.9236934","DOIUrl":null,"url":null,"abstract":"Based on simulation samples of open source data collection and communication system signal pretreatment methods, we design a Convolution Neural Network (CNN) that contains three full connection layers and three convolution layers to recognize 11 different kinds of wireless signal modulation. In additive white Gaussian noise(AWGN) model, CNN networks can realize automatic modulation classification of the wireless signal by learning the deep characters of sample data, and the average recognition accuracy is up to 81% under different ratio of signal to noise (SNR). We analyze the influence between modulation recognition accuracy and network hyperparameters such as network structures, convolutional layers, dropout value, batch size, and network training methods.","PeriodicalId":355473,"journal":{"name":"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CNN-Based Automatic Modulation Recognition of Wireless Signal\",\"authors\":\"Kaichong Ma, Yongbin Zhou, Jianyun Chen\",\"doi\":\"10.1109/ICISCAE51034.2020.9236934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on simulation samples of open source data collection and communication system signal pretreatment methods, we design a Convolution Neural Network (CNN) that contains three full connection layers and three convolution layers to recognize 11 different kinds of wireless signal modulation. In additive white Gaussian noise(AWGN) model, CNN networks can realize automatic modulation classification of the wireless signal by learning the deep characters of sample data, and the average recognition accuracy is up to 81% under different ratio of signal to noise (SNR). We analyze the influence between modulation recognition accuracy and network hyperparameters such as network structures, convolutional layers, dropout value, batch size, and network training methods.\",\"PeriodicalId\":355473,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCAE51034.2020.9236934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE51034.2020.9236934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于开源数据采集仿真样本和通信系统信号预处理方法,设计了包含3个全连接层和3个卷积层的卷积神经网络(CNN),用于识别11种不同的无线信号调制方式。在加性高斯白噪声(AWGN)模型中,CNN网络通过学习样本数据的深度特征,实现无线信号的自动调制分类,在不同信噪比(SNR)下的平均识别准确率可达81%。我们分析了网络结构、卷积层、dropout值、批处理大小和网络训练方法等网络超参数对调制识别精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Automatic Modulation Recognition of Wireless Signal
Based on simulation samples of open source data collection and communication system signal pretreatment methods, we design a Convolution Neural Network (CNN) that contains three full connection layers and three convolution layers to recognize 11 different kinds of wireless signal modulation. In additive white Gaussian noise(AWGN) model, CNN networks can realize automatic modulation classification of the wireless signal by learning the deep characters of sample data, and the average recognition accuracy is up to 81% under different ratio of signal to noise (SNR). We analyze the influence between modulation recognition accuracy and network hyperparameters such as network structures, convolutional layers, dropout value, batch size, and network training methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信