多目标高阶多项式网络对斜尖针插入力的建模

H. Yousefi, Mehdi Fallahnezhad
{"title":"多目标高阶多项式网络对斜尖针插入力的建模","authors":"H. Yousefi, Mehdi Fallahnezhad","doi":"10.4018/IJNCR.2015070103","DOIUrl":null,"url":null,"abstract":"Needle insertion has been a very popular minimal invasive surgery method in cancer detection, soft tissue properties recognition and many other surgical operations. Its applications were observed in brain biopsy, prostate brachytherapy and many percutaneous therapies. In this study the authors would like to provide a model of needle force in soft tissue insertion. This model has been developed using higher order polynomial networks. In order to provide a predictive model one-dimensional force sensed on enacting end of bevel-tip needles. The speeds of penetration for quasi-static processes have chosen to be in the range of between 5 mm/min and 300 mm/min. Second and third orders of polynomials employed in the network which contains displacement and speed as their main affecting parameters in the simplified model. Results of fitting functions showed a reliable accuracy in force-displacement graph.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Objective Higher Order Polynomial Networks to Model Insertion Force of Bevel-Tip Needles\",\"authors\":\"H. Yousefi, Mehdi Fallahnezhad\",\"doi\":\"10.4018/IJNCR.2015070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Needle insertion has been a very popular minimal invasive surgery method in cancer detection, soft tissue properties recognition and many other surgical operations. Its applications were observed in brain biopsy, prostate brachytherapy and many percutaneous therapies. In this study the authors would like to provide a model of needle force in soft tissue insertion. This model has been developed using higher order polynomial networks. In order to provide a predictive model one-dimensional force sensed on enacting end of bevel-tip needles. The speeds of penetration for quasi-static processes have chosen to be in the range of between 5 mm/min and 300 mm/min. Second and third orders of polynomials employed in the network which contains displacement and speed as their main affecting parameters in the simplified model. Results of fitting functions showed a reliable accuracy in force-displacement graph.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2015070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2015070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在癌症检测、软组织特性识别和许多其他外科手术中,插针已成为一种非常流行的微创手术方法。它在脑活检、前列腺近距离治疗和许多经皮治疗中都有应用。在这项研究中,作者希望提供一个软组织插入时针力的模型。该模型是用高阶多项式网络建立的。为了提供一种预测模型,对斜尖针的出针端进行了一维力检测。准静态过程的渗透速度选择在5毫米/分钟到300毫米/分钟之间。简化模型中以位移和速度为主要影响参数的二阶和三阶多项式。拟合函数结果表明,力-位移图具有可靠的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Higher Order Polynomial Networks to Model Insertion Force of Bevel-Tip Needles
Needle insertion has been a very popular minimal invasive surgery method in cancer detection, soft tissue properties recognition and many other surgical operations. Its applications were observed in brain biopsy, prostate brachytherapy and many percutaneous therapies. In this study the authors would like to provide a model of needle force in soft tissue insertion. This model has been developed using higher order polynomial networks. In order to provide a predictive model one-dimensional force sensed on enacting end of bevel-tip needles. The speeds of penetration for quasi-static processes have chosen to be in the range of between 5 mm/min and 300 mm/min. Second and third orders of polynomials employed in the network which contains displacement and speed as their main affecting parameters in the simplified model. Results of fitting functions showed a reliable accuracy in force-displacement graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信