提高信息集解码量子电路的效率

S. Perriello, Alessandro Barenghi, Gerardo Pelosi
{"title":"提高信息集解码量子电路的效率","authors":"S. Perriello, Alessandro Barenghi, Gerardo Pelosi","doi":"10.1145/3607256","DOIUrl":null,"url":null,"abstract":"Code-based cryptosystems are a promising option for Post-Quantum Cryptography, as neither classical nor quantum algorithms provide polynomial time solvers for their underlying hard problem. Indeed, to provide sound alternatives to lattice-based cryptosystems, U.S. National Institute of Standards and Technology (NIST) advanced all round 3 code-based cryptosystems to round 4 of its Post-Quantum standardization initiative. We present a complete implementation of a quantum circuit based on the Information Set Decoding (ISD) strategy, the best known one against code-based cryptosystems, providing quantitative measures for the security margin achieved with respect to the quantum-accelerated key recovery on AES, targeting both the current state-of-the-art approach and the NIST estimates. Our work improves the state-of-the-art, reducing the circuit depth by 219 to 230 for all the parameters of the NIST selected cryptosystems, mainly due to an improved quantum Gauss–Jordan elimination circuit with respect to previous proposals. We show how our Prange’s-based quantum ISD circuit reduces the security margin with respect to its classical counterpart. Finally, we address the concern brought forward in the latest NIST report on the parameters choice for the McEliece cryptosystem, showing that its parameter choice yields a computational effort slightly below the required target level.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Efficiency of Quantum Circuits for Information Set Decoding\",\"authors\":\"S. Perriello, Alessandro Barenghi, Gerardo Pelosi\",\"doi\":\"10.1145/3607256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code-based cryptosystems are a promising option for Post-Quantum Cryptography, as neither classical nor quantum algorithms provide polynomial time solvers for their underlying hard problem. Indeed, to provide sound alternatives to lattice-based cryptosystems, U.S. National Institute of Standards and Technology (NIST) advanced all round 3 code-based cryptosystems to round 4 of its Post-Quantum standardization initiative. We present a complete implementation of a quantum circuit based on the Information Set Decoding (ISD) strategy, the best known one against code-based cryptosystems, providing quantitative measures for the security margin achieved with respect to the quantum-accelerated key recovery on AES, targeting both the current state-of-the-art approach and the NIST estimates. Our work improves the state-of-the-art, reducing the circuit depth by 219 to 230 for all the parameters of the NIST selected cryptosystems, mainly due to an improved quantum Gauss–Jordan elimination circuit with respect to previous proposals. We show how our Prange’s-based quantum ISD circuit reduces the security margin with respect to its classical counterpart. Finally, we address the concern brought forward in the latest NIST report on the parameters choice for the McEliece cryptosystem, showing that its parameter choice yields a computational effort slightly below the required target level.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3607256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3607256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于代码的密码系统在后量子密码学中是一个很有前途的选择,因为经典算法和量子算法都没有为其潜在的难题提供多项式时间解算器。事实上,为了提供基于格的密码系统的可靠替代方案,美国国家标准与技术研究所(NIST)将所有第3轮基于代码的密码系统推进到其后量子标准化计划的第4轮。我们提出了一个基于信息集解码(ISD)策略的量子电路的完整实现,这是针对基于代码的密码系统最著名的策略,针对AES的量子加速密钥恢复提供了安全裕度的定量测量,针对当前最先进的方法和NIST的估计。我们的工作改进了最先进的技术,将NIST选择的密码系统的所有参数的电路深度减少了219到230,主要是由于相对于以前的建议改进了量子高斯-乔丹消除电路。我们展示了我们的基于Prange的量子ISD电路如何降低相对于其经典对偶的安全裕度。最后,我们解决了NIST关于McEliece密码系统参数选择的最新报告中提出的问题,表明其参数选择产生的计算工作量略低于所需的目标水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Efficiency of Quantum Circuits for Information Set Decoding
Code-based cryptosystems are a promising option for Post-Quantum Cryptography, as neither classical nor quantum algorithms provide polynomial time solvers for their underlying hard problem. Indeed, to provide sound alternatives to lattice-based cryptosystems, U.S. National Institute of Standards and Technology (NIST) advanced all round 3 code-based cryptosystems to round 4 of its Post-Quantum standardization initiative. We present a complete implementation of a quantum circuit based on the Information Set Decoding (ISD) strategy, the best known one against code-based cryptosystems, providing quantitative measures for the security margin achieved with respect to the quantum-accelerated key recovery on AES, targeting both the current state-of-the-art approach and the NIST estimates. Our work improves the state-of-the-art, reducing the circuit depth by 219 to 230 for all the parameters of the NIST selected cryptosystems, mainly due to an improved quantum Gauss–Jordan elimination circuit with respect to previous proposals. We show how our Prange’s-based quantum ISD circuit reduces the security margin with respect to its classical counterpart. Finally, we address the concern brought forward in the latest NIST report on the parameters choice for the McEliece cryptosystem, showing that its parameter choice yields a computational effort slightly below the required target level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信