基于极化特征驱动的深度卷积神经网络的PolSAR作物多时相分类

Siwei Chen, Chensong Tao
{"title":"基于极化特征驱动的深度卷积神经网络的PolSAR作物多时相分类","authors":"Siwei Chen, Chensong Tao","doi":"10.1109/RSIP.2017.7958818","DOIUrl":null,"url":null,"abstract":"Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-temporal PolSAR crops classification using polarimetric-feature-driven deep convolutional neural network\",\"authors\":\"Siwei Chen, Chensong Tao\",\"doi\":\"10.1109/RSIP.2017.7958818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多时相PolSAR数据适用于作物分类和生长监测。在较长的时间采集持续时间内,仍然很难建立具有良好鲁棒性和高生成率的分类器。本工作旨在通过探索目标散射机制解释和高级深度学习的好处,为这一任务提供解决方案。建立了一种极化特征驱动的深度卷积神经网络分类方案。与多时相UAVSAR数据集的对比研究验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-temporal PolSAR crops classification using polarimetric-feature-driven deep convolutional neural network
Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信