{"title":"基于极化特征驱动的深度卷积神经网络的PolSAR作物多时相分类","authors":"Siwei Chen, Chensong Tao","doi":"10.1109/RSIP.2017.7958818","DOIUrl":null,"url":null,"abstract":"Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-temporal PolSAR crops classification using polarimetric-feature-driven deep convolutional neural network\",\"authors\":\"Siwei Chen, Chensong Tao\",\"doi\":\"10.1109/RSIP.2017.7958818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-temporal PolSAR crops classification using polarimetric-feature-driven deep convolutional neural network
Multi-temporal PolSAR data is suitable for crops classification and growth monitoring. It is still difficult to establish a classifier with good robustness and high generation over a long temporal acquisition duration. This work aims to provide a solution to this task by exploring benefits from both the target scattering mechanism interpretation and the advanced deep learning. A polarimetric-feature-driven deep convolutional neural network classification scheme is established. Comparison studies with multi-temporal UAVSAR datasets validate the efficiency and superiority of the proposal.