无小区毫米波大规模MIMO中的功率分配:基于深度确定性策略梯度

Yu Zhao, Fengming Zhang, Yangjun Gao, Chaoqi Fu
{"title":"无小区毫米波大规模MIMO中的功率分配:基于深度确定性策略梯度","authors":"Yu Zhao, Fengming Zhang, Yangjun Gao, Chaoqi Fu","doi":"10.1109/WCCCT56755.2023.10052585","DOIUrl":null,"url":null,"abstract":"This paper studies the weighted sum-spectral efficiency (SE) power allocation problem in cell-free (CF) mmWave massive multiple-input multiple-output (MIMO) with mobile user equipments (UEs). This is a non-convex problem that needs to be solved within a time constraint of the channel state information (CSI) variation. Although several heuristic methods, e.g., the weighted minimum mean square error (WMMSE) algorithm, have been developed to solve this problem, these methods entail considerable computational complexity therefore hardly meet the time constraint. To address this issue, we propose a deep reinforcement learning (DRL) solution based on the deep deterministic policy gradient (DDPG) method. It only needs several layers of neural network to perform the power allocation. The numerical results, obtained from a particular 3GPP scenario, show that the proposed DDPG method outperforms the existing algorithms.","PeriodicalId":112978,"journal":{"name":"2023 6th World Conference on Computing and Communication Technologies (WCCCT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Allocation in Cell-Free mmWave Massive MIMO: Using Deep Deterministic Policy Gradient\",\"authors\":\"Yu Zhao, Fengming Zhang, Yangjun Gao, Chaoqi Fu\",\"doi\":\"10.1109/WCCCT56755.2023.10052585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the weighted sum-spectral efficiency (SE) power allocation problem in cell-free (CF) mmWave massive multiple-input multiple-output (MIMO) with mobile user equipments (UEs). This is a non-convex problem that needs to be solved within a time constraint of the channel state information (CSI) variation. Although several heuristic methods, e.g., the weighted minimum mean square error (WMMSE) algorithm, have been developed to solve this problem, these methods entail considerable computational complexity therefore hardly meet the time constraint. To address this issue, we propose a deep reinforcement learning (DRL) solution based on the deep deterministic policy gradient (DDPG) method. It only needs several layers of neural network to perform the power allocation. The numerical results, obtained from a particular 3GPP scenario, show that the proposed DDPG method outperforms the existing algorithms.\",\"PeriodicalId\":112978,\"journal\":{\"name\":\"2023 6th World Conference on Computing and Communication Technologies (WCCCT)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th World Conference on Computing and Communication Technologies (WCCCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCCCT56755.2023.10052585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th World Conference on Computing and Communication Technologies (WCCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCCCT56755.2023.10052585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了无小区(CF)毫米波大规模多输入多输出(MIMO)的加权和频谱效率(SE)功率分配问题。这是一个非凸问题,需要在通道状态信息(CSI)变化的时间约束内解决。虽然一些启发式方法,如加权最小均方误差(WMMSE)算法,已经被开发来解决这个问题,但这些方法需要相当大的计算复杂度,因此很难满足时间限制。为了解决这个问题,我们提出了一种基于深度确定性策略梯度(DDPG)方法的深度强化学习(DRL)解决方案。它只需要几层神经网络来完成功率分配。在一个特定的3GPP场景下的数值计算结果表明,所提出的DDPG方法优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Allocation in Cell-Free mmWave Massive MIMO: Using Deep Deterministic Policy Gradient
This paper studies the weighted sum-spectral efficiency (SE) power allocation problem in cell-free (CF) mmWave massive multiple-input multiple-output (MIMO) with mobile user equipments (UEs). This is a non-convex problem that needs to be solved within a time constraint of the channel state information (CSI) variation. Although several heuristic methods, e.g., the weighted minimum mean square error (WMMSE) algorithm, have been developed to solve this problem, these methods entail considerable computational complexity therefore hardly meet the time constraint. To address this issue, we propose a deep reinforcement learning (DRL) solution based on the deep deterministic policy gradient (DDPG) method. It only needs several layers of neural network to perform the power allocation. The numerical results, obtained from a particular 3GPP scenario, show that the proposed DDPG method outperforms the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信