基于稀疏表示的步态识别

Yan Ma
{"title":"基于稀疏表示的步态识别","authors":"Yan Ma","doi":"10.1109/ICWAPR.2010.5576306","DOIUrl":null,"url":null,"abstract":"A new approach of gait recognition based on sparse representation is proposed. Static and motion information are fused using the averaged boundary which is extracted by canny operator. The training data and the testing data belong to one object when there is a sparse representation in training data for the testing data. The algorithm is implemented on USF gait database. Experimental results prove the higher performance of the method on the gait datasets which are captured on different time.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"9 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gait recognition using sparse representation\",\"authors\":\"Yan Ma\",\"doi\":\"10.1109/ICWAPR.2010.5576306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach of gait recognition based on sparse representation is proposed. Static and motion information are fused using the averaged boundary which is extracted by canny operator. The training data and the testing data belong to one object when there is a sparse representation in training data for the testing data. The algorithm is implemented on USF gait database. Experimental results prove the higher performance of the method on the gait datasets which are captured on different time.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"9 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于稀疏表示的步态识别新方法。利用canny算子提取的平均边界融合静态和运动信息。当训练数据对测试数据有稀疏表示时,训练数据和测试数据属于一个对象。该算法在USF步态数据库上实现。实验结果表明,该方法对不同时间采集的步态数据集具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait recognition using sparse representation
A new approach of gait recognition based on sparse representation is proposed. Static and motion information are fused using the averaged boundary which is extracted by canny operator. The training data and the testing data belong to one object when there is a sparse representation in training data for the testing data. The algorithm is implemented on USF gait database. Experimental results prove the higher performance of the method on the gait datasets which are captured on different time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信