基于预测编码和分层树集分割的心电信号压缩

G. Jati, Aprinaldi, S. M. Isa, W. Jatmiko
{"title":"基于预测编码和分层树集分割的心电信号压缩","authors":"G. Jati, Aprinaldi, S. M. Isa, W. Jatmiko","doi":"10.1109/ICACSIS.2015.7415191","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for multi-lead ECG signal compression using Predictive Coding combined with Set Partitioning In Hierarchical Trees (SPIHT). We utilize linear prediction between the beats to exploit the high correlation among those beats. This method can optimize the redundancy between adjacent samples and adjacent beats. Predictive coding is the next step after beat reordering step. The purpose of using predictive coding is to minimize amplitude variance of 2D ECG array so the compression error can be minimize. The experiments from selected records from MIT-BIH arrhythmia database shows that the proposed method is more efficient for ECG signal compression compared with original SPIHT and relatively have lower distortion with the same compression ratios compared to the other wavelet transformation techniques.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECG signal compression by predictive coding and Set Partitioning in Hierarchical Trees (SPIHT)\",\"authors\":\"G. Jati, Aprinaldi, S. M. Isa, W. Jatmiko\",\"doi\":\"10.1109/ICACSIS.2015.7415191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method for multi-lead ECG signal compression using Predictive Coding combined with Set Partitioning In Hierarchical Trees (SPIHT). We utilize linear prediction between the beats to exploit the high correlation among those beats. This method can optimize the redundancy between adjacent samples and adjacent beats. Predictive coding is the next step after beat reordering step. The purpose of using predictive coding is to minimize amplitude variance of 2D ECG array so the compression error can be minimize. The experiments from selected records from MIT-BIH arrhythmia database shows that the proposed method is more efficient for ECG signal compression compared with original SPIHT and relatively have lower distortion with the same compression ratios compared to the other wavelet transformation techniques.\",\"PeriodicalId\":325539,\"journal\":{\"name\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2015.7415191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种结合分层树集分割(SPIHT)的预测编码多导联心电信号压缩方法。我们利用节拍之间的线性预测来利用这些节拍之间的高相关性。该方法可以优化相邻采样和相邻拍之间的冗余度。预测编码是节拍重排序后的下一步。采用预测编码的目的是使二维心电阵列的振幅方差最小,从而使压缩误差最小。从MIT-BIH心律失常数据库中选取的记录进行实验,结果表明,与原有的SPIHT相比,该方法对心电信号的压缩效率更高,在相同压缩比的情况下,与其他小波变换相比,该方法具有更低的失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG signal compression by predictive coding and Set Partitioning in Hierarchical Trees (SPIHT)
In this paper we present a method for multi-lead ECG signal compression using Predictive Coding combined with Set Partitioning In Hierarchical Trees (SPIHT). We utilize linear prediction between the beats to exploit the high correlation among those beats. This method can optimize the redundancy between adjacent samples and adjacent beats. Predictive coding is the next step after beat reordering step. The purpose of using predictive coding is to minimize amplitude variance of 2D ECG array so the compression error can be minimize. The experiments from selected records from MIT-BIH arrhythmia database shows that the proposed method is more efficient for ECG signal compression compared with original SPIHT and relatively have lower distortion with the same compression ratios compared to the other wavelet transformation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信