{"title":"鞍点问题的一种改进收敛条件的广义原对偶算法","authors":"B. He, Fengming Ma, Sheng Xu, Xiaoming Yuan","doi":"10.1137/21m1453463","DOIUrl":null,"url":null,"abstract":"We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Generalized Primal-Dual Algorithm with Improved Convergence Condition for Saddle Point Problems\",\"authors\":\"B. He, Fengming Ma, Sheng Xu, Xiaoming Yuan\",\"doi\":\"10.1137/21m1453463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1453463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1453463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Generalized Primal-Dual Algorithm with Improved Convergence Condition for Saddle Point Problems
We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.