鞍点问题的一种改进收敛条件的广义原对偶算法

B. He, Fengming Ma, Sheng Xu, Xiaoming Yuan
{"title":"鞍点问题的一种改进收敛条件的广义原对偶算法","authors":"B. He, Fengming Ma, Sheng Xu, Xiaoming Yuan","doi":"10.1137/21m1453463","DOIUrl":null,"url":null,"abstract":"We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Generalized Primal-Dual Algorithm with Improved Convergence Condition for Saddle Point Problems\",\"authors\":\"B. He, Fengming Ma, Sheng Xu, Xiaoming Yuan\",\"doi\":\"10.1137/21m1453463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1453463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1453463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

推广了Chambolle和Pock提出的鞍点问题的原对偶算法,改进了其收敛性的保证条件。改进的收敛保证条件对一般设置是有效的,并证明是最优的。它还允许我们辨别出更大的步长,从而提供了一种简单而通用的方法来提高原始原始对偶算法的数值性能。此外,我们提出了一种结构探索启发式方法,进一步放宽了某些特定鞍点问题的收敛保证条件,从而可以产生更大的步长,从而显着提高性能。通过经典赋值问题的数值实例说明了这种启发式算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Primal-Dual Algorithm with Improved Convergence Condition for Saddle Point Problems
We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock for saddle point problems, and improve the condition for ensuring its convergence. The improved convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and universal way to improve numerical performance of the original primal-dual algorithm. In addition, we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for some specific saddle point problems, which could yield much larger step sizes and hence significantly better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信