基于交叉质心的文本分类特征选择方法

Jieming Yang, Zhiying Liu, Zhaoyang Qu, Junchang Wang
{"title":"基于交叉质心的文本分类特征选择方法","authors":"Jieming Yang, Zhiying Liu, Zhaoyang Qu, Junchang Wang","doi":"10.1109/SNPD.2014.6888675","DOIUrl":null,"url":null,"abstract":"The most important characteristic of text categorization is the high dimensionality even for the moderate size dataset. Feature selection, which can reduce the size of the dimensionality without sacrificing the performance of the categorization and avoid over-fitting, is a commonly used approach in dimensionality reduction. In this paper, we proposed a new feature selection, which evaluates the deviation from the centroid based on both inter-category and intra-category. We compared the proposed method with four well-known feature selection algorithms using support vector machines on three benchmark datasets (20-newgroups, reuters-21578 and webkb). The experimental results show that the proposed method can significantly improve the performance of the classifier.","PeriodicalId":272932,"journal":{"name":"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature selection method based on crossed centroid for text categorization\",\"authors\":\"Jieming Yang, Zhiying Liu, Zhaoyang Qu, Junchang Wang\",\"doi\":\"10.1109/SNPD.2014.6888675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important characteristic of text categorization is the high dimensionality even for the moderate size dataset. Feature selection, which can reduce the size of the dimensionality without sacrificing the performance of the categorization and avoid over-fitting, is a commonly used approach in dimensionality reduction. In this paper, we proposed a new feature selection, which evaluates the deviation from the centroid based on both inter-category and intra-category. We compared the proposed method with four well-known feature selection algorithms using support vector machines on three benchmark datasets (20-newgroups, reuters-21578 and webkb). The experimental results show that the proposed method can significantly improve the performance of the classifier.\",\"PeriodicalId\":272932,\"journal\":{\"name\":\"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2014.6888675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2014.6888675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

文本分类最重要的特点是即使对于中等规模的数据集,其维数也很高。特征选择是一种常用的降维方法,它可以在不牺牲分类性能和避免过拟合的情况下减少维数的大小。在本文中,我们提出了一种新的特征选择方法,它基于类别间和类别内来评估与质心的偏差。在3个基准数据集(20-newgroups、reuters-21578和webkb)上,将该方法与4种常用的支持向量机特征选择算法进行了比较。实验结果表明,该方法能显著提高分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection method based on crossed centroid for text categorization
The most important characteristic of text categorization is the high dimensionality even for the moderate size dataset. Feature selection, which can reduce the size of the dimensionality without sacrificing the performance of the categorization and avoid over-fitting, is a commonly used approach in dimensionality reduction. In this paper, we proposed a new feature selection, which evaluates the deviation from the centroid based on both inter-category and intra-category. We compared the proposed method with four well-known feature selection algorithms using support vector machines on three benchmark datasets (20-newgroups, reuters-21578 and webkb). The experimental results show that the proposed method can significantly improve the performance of the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信