G. Zavaliagkos, S. Austin, J. Makhoul, R. Schwartz
{"title":"基于隐马尔可夫模型的分段神经网络混合连续语音识别系统","authors":"G. Zavaliagkos, S. Austin, J. Makhoul, R. Schwartz","doi":"10.1109/NNSP.1991.239507","DOIUrl":null,"url":null,"abstract":"The authors present the concept of a 'segmental neural net' (SNN) for phonetic modeling in continuous speech recognition (CSR) and demonstrate how than can be used with a multiple hypothesis (or N-Best) paradigm to combine different CSR systems. In particular, they have developed a system that combines the SNN with a hidden Markov model (HMM) system. They believe that this is the first system incorporating a neural network for which the performance has exceeded the state of the art in large-vocabulary, continuous speech recognition. To take advantage of the training and decoding speed of HMMs, the authors have developed a novel hybrid SNN/HMM system that combines the advantages of both types of approaches. In this hybrid system, use is made of the N-best paradigm to generate likely phonetic segmentations, which are then scored by the SNN. The HMM and SNN scores are then combined to optimize performance.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A hybrid continuous speech recognition system using segmental neural nets with hidden Markov models\",\"authors\":\"G. Zavaliagkos, S. Austin, J. Makhoul, R. Schwartz\",\"doi\":\"10.1109/NNSP.1991.239507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present the concept of a 'segmental neural net' (SNN) for phonetic modeling in continuous speech recognition (CSR) and demonstrate how than can be used with a multiple hypothesis (or N-Best) paradigm to combine different CSR systems. In particular, they have developed a system that combines the SNN with a hidden Markov model (HMM) system. They believe that this is the first system incorporating a neural network for which the performance has exceeded the state of the art in large-vocabulary, continuous speech recognition. To take advantage of the training and decoding speed of HMMs, the authors have developed a novel hybrid SNN/HMM system that combines the advantages of both types of approaches. In this hybrid system, use is made of the N-best paradigm to generate likely phonetic segmentations, which are then scored by the SNN. The HMM and SNN scores are then combined to optimize performance.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid continuous speech recognition system using segmental neural nets with hidden Markov models
The authors present the concept of a 'segmental neural net' (SNN) for phonetic modeling in continuous speech recognition (CSR) and demonstrate how than can be used with a multiple hypothesis (or N-Best) paradigm to combine different CSR systems. In particular, they have developed a system that combines the SNN with a hidden Markov model (HMM) system. They believe that this is the first system incorporating a neural network for which the performance has exceeded the state of the art in large-vocabulary, continuous speech recognition. To take advantage of the training and decoding speed of HMMs, the authors have developed a novel hybrid SNN/HMM system that combines the advantages of both types of approaches. In this hybrid system, use is made of the N-best paradigm to generate likely phonetic segmentations, which are then scored by the SNN. The HMM and SNN scores are then combined to optimize performance.<>