机器人机械臂鲁棒力控制的神经网络技术

Seul Jung, T. Hsia
{"title":"机器人机械臂鲁棒力控制的神经网络技术","authors":"Seul Jung, T. Hsia","doi":"10.1109/ISIC.1995.525046","DOIUrl":null,"url":null,"abstract":"In this paper a neural network force/position control scheme is proposed to compensate uncertainties in both robot dynamics and unknown environments. The proposed impedance control allows us to regulate force directly by specifying a desired force. Training signals are proposed for a feedforward neural network controller. The robustness analysis of the uncertainties in environment position is presented. Simulation results are presented to show that both the position and force tracking are excellent in the presence of uncertainties in robot dynamics and unknown environments.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Neural network techniques for robust force control of robot manipulators\",\"authors\":\"Seul Jung, T. Hsia\",\"doi\":\"10.1109/ISIC.1995.525046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a neural network force/position control scheme is proposed to compensate uncertainties in both robot dynamics and unknown environments. The proposed impedance control allows us to regulate force directly by specifying a desired force. Training signals are proposed for a feedforward neural network controller. The robustness analysis of the uncertainties in environment position is presented. Simulation results are presented to show that both the position and force tracking are excellent in the presence of uncertainties in robot dynamics and unknown environments.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

针对机器人动力学和未知环境的不确定性,提出了一种神经网络力/位置控制方案。所提出的阻抗控制允许我们通过指定所需的力来直接调节力。提出了一种前馈神经网络控制器的训练信号。给出了环境位置不确定性的鲁棒性分析。仿真结果表明,在存在不确定性和未知环境的情况下,该方法具有良好的位置跟踪和力跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network techniques for robust force control of robot manipulators
In this paper a neural network force/position control scheme is proposed to compensate uncertainties in both robot dynamics and unknown environments. The proposed impedance control allows us to regulate force directly by specifying a desired force. Training signals are proposed for a feedforward neural network controller. The robustness analysis of the uncertainties in environment position is presented. Simulation results are presented to show that both the position and force tracking are excellent in the presence of uncertainties in robot dynamics and unknown environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信