基于U-Net和随机森林分类算法的亮场显微镜痰涂片图像结核杆菌鉴定

G. K, V. S.
{"title":"基于U-Net和随机森林分类算法的亮场显微镜痰涂片图像结核杆菌鉴定","authors":"G. K, V. S.","doi":"10.1109/AICAPS57044.2023.10074198","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is an infectious illness that may be severe and primarily impacts the lungs. Examining sputum smears under bright field microscopes is one of the simplest and most successful ways to detect TB infection in impoverished nations like India. A method for detecting tuberculosis bacteria from bright-field microscopic sputum smear images is proposed in this work. U-shaped encoder-decoder network architecture (U-Net) is used to first segment the bright field microscopic sputum smear images, and then Random Forest Classification Algorithm is used for final prediction. The detection of bacilli produced results that are comparable to other methods.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Tuberculosis Bacilli from Bright Field Microscopic Sputum Smear Images using U-Net and Random Forest Classification Algorithm\",\"authors\":\"G. K, V. S.\",\"doi\":\"10.1109/AICAPS57044.2023.10074198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuberculosis (TB) is an infectious illness that may be severe and primarily impacts the lungs. Examining sputum smears under bright field microscopes is one of the simplest and most successful ways to detect TB infection in impoverished nations like India. A method for detecting tuberculosis bacteria from bright-field microscopic sputum smear images is proposed in this work. U-shaped encoder-decoder network architecture (U-Net) is used to first segment the bright field microscopic sputum smear images, and then Random Forest Classification Algorithm is used for final prediction. The detection of bacilli produced results that are comparable to other methods.\",\"PeriodicalId\":146698,\"journal\":{\"name\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAPS57044.2023.10074198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结核病(TB)是一种严重的传染病,主要影响肺部。在明亮视野显微镜下检查痰涂片是在印度等贫困国家检测结核病感染的最简单和最成功的方法之一。本文提出了一种从亮场显微镜痰涂片图像中检测结核菌的方法。首先使用u型编码器-解码器网络架构(U-Net)对亮场显微痰涂片图像进行分割,然后使用随机森林分类算法进行最终预测。杆菌的检测结果与其他方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Tuberculosis Bacilli from Bright Field Microscopic Sputum Smear Images using U-Net and Random Forest Classification Algorithm
Tuberculosis (TB) is an infectious illness that may be severe and primarily impacts the lungs. Examining sputum smears under bright field microscopes is one of the simplest and most successful ways to detect TB infection in impoverished nations like India. A method for detecting tuberculosis bacteria from bright-field microscopic sputum smear images is proposed in this work. U-shaped encoder-decoder network architecture (U-Net) is used to first segment the bright field microscopic sputum smear images, and then Random Forest Classification Algorithm is used for final prediction. The detection of bacilli produced results that are comparable to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信