【可见光固化玻璃钢义齿的研制】。

P Y Yu
{"title":"【可见光固化玻璃钢义齿的研制】。","authors":"P Y Yu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylic denture may be fractured easily because it has a relatively poor resistance to stresses of impact, and the thick acrylic denture base also uncomforted to denture wearers. In this study, for improvement of the mechanical properties, the FRP is applied to the denture base, and try to make a thin denture base. Using the visible light-curing system, the laboratory fabrication time is saved dramatically. To develop the visible light-cured FRP denture base, with various combination of matrix resins and reinforcements, the physical properties of FRP plates were investigated first. From the results of the bending test, hardness test, and manipulation considering, the sateen weave's glasscloth was choose as the reinforcement of the prepreg. The matrix resin of Bis-GMA/UDMA/3G at 48/48/4 wt% was determined. The 3 plies glasscloth included FRP plate is 0.8 mm thickness has the maximum bending strength about 50 kgf/mm2, which is about 5 times larger than that of acrylic resin. Succeeding the study of above, the FRP denture base was fabricated by using the 0.8 mm thickness 3 plies included prepreg. This repreg is manufactured in sheet form beforehand, which is ease to manipulate at laboratory. By using the visible light curing system, it is only taken 10 min. to make a FRP denture base. The following procedures of fabricating a FRP denture is the same as metalplate denture. The visible-light cured FRP denture has some advantages such as accuracy of fit, ease of fabrication and manipulation, and only 0.8 mm thickness but has superior strength.</p>","PeriodicalId":75367,"journal":{"name":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","volume":"35 1","pages":"41-59"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Development of visible-light cured FRP denture].\",\"authors\":\"P Y Yu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrylic denture may be fractured easily because it has a relatively poor resistance to stresses of impact, and the thick acrylic denture base also uncomforted to denture wearers. In this study, for improvement of the mechanical properties, the FRP is applied to the denture base, and try to make a thin denture base. Using the visible light-curing system, the laboratory fabrication time is saved dramatically. To develop the visible light-cured FRP denture base, with various combination of matrix resins and reinforcements, the physical properties of FRP plates were investigated first. From the results of the bending test, hardness test, and manipulation considering, the sateen weave's glasscloth was choose as the reinforcement of the prepreg. The matrix resin of Bis-GMA/UDMA/3G at 48/48/4 wt% was determined. The 3 plies glasscloth included FRP plate is 0.8 mm thickness has the maximum bending strength about 50 kgf/mm2, which is about 5 times larger than that of acrylic resin. Succeeding the study of above, the FRP denture base was fabricated by using the 0.8 mm thickness 3 plies included prepreg. This repreg is manufactured in sheet form beforehand, which is ease to manipulate at laboratory. By using the visible light curing system, it is only taken 10 min. to make a FRP denture base. The following procedures of fabricating a FRP denture is the same as metalplate denture. The visible-light cured FRP denture has some advantages such as accuracy of fit, ease of fabrication and manipulation, and only 0.8 mm thickness but has superior strength.</p>\",\"PeriodicalId\":75367,\"journal\":{\"name\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"volume\":\"35 1\",\"pages\":\"41-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚克力义齿对冲击应力的抵抗能力相对较差,容易发生断裂,而且较厚的亚克力义齿基托也会给义齿佩戴者带来不舒适感。本研究为提高义齿基托的力学性能,将FRP材料应用于义齿基托中,并尝试制作较薄的义齿基托。采用可见光固化系统,大大节省了实验室制作时间。为了研制具有不同基体树脂和增强材料组合的可见光固化玻璃钢义齿基托,首先对玻璃钢板的物理性能进行了研究。综合弯曲试验、硬度试验和工艺操作的结果,选择锦缎组织的玻璃布作为预浸料的增强材料。测定了Bis-GMA/UDMA/3G在48/48/4 wt%时的基体树脂。含玻璃钢板的3层玻璃布厚度为0.8 mm,最大抗弯强度约为50 kgf/mm2,是丙烯酸树脂的5倍左右。在此基础上,采用0.8 mm厚度的3层含预浸料制备了玻璃钢义齿基托。该产品预先制成片状,便于在实验室操作。采用可见光固化系统,制作玻璃钢义齿基托仅需10分钟。制作玻璃钢义齿的步骤与金属板义齿相同。可见光固化玻璃钢义齿具有贴合准确、易于制作和操作等优点,其厚度仅为0.8 mm,但具有较好的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Development of visible-light cured FRP denture].

Acrylic denture may be fractured easily because it has a relatively poor resistance to stresses of impact, and the thick acrylic denture base also uncomforted to denture wearers. In this study, for improvement of the mechanical properties, the FRP is applied to the denture base, and try to make a thin denture base. Using the visible light-curing system, the laboratory fabrication time is saved dramatically. To develop the visible light-cured FRP denture base, with various combination of matrix resins and reinforcements, the physical properties of FRP plates were investigated first. From the results of the bending test, hardness test, and manipulation considering, the sateen weave's glasscloth was choose as the reinforcement of the prepreg. The matrix resin of Bis-GMA/UDMA/3G at 48/48/4 wt% was determined. The 3 plies glasscloth included FRP plate is 0.8 mm thickness has the maximum bending strength about 50 kgf/mm2, which is about 5 times larger than that of acrylic resin. Succeeding the study of above, the FRP denture base was fabricated by using the 0.8 mm thickness 3 plies included prepreg. This repreg is manufactured in sheet form beforehand, which is ease to manipulate at laboratory. By using the visible light curing system, it is only taken 10 min. to make a FRP denture base. The following procedures of fabricating a FRP denture is the same as metalplate denture. The visible-light cured FRP denture has some advantages such as accuracy of fit, ease of fabrication and manipulation, and only 0.8 mm thickness but has superior strength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信