大型稀疏矩阵线性方程的存储与求解

Chao Liu, Junmin Ye, Yining Ma
{"title":"大型稀疏矩阵线性方程的存储与求解","authors":"Chao Liu, Junmin Ye, Yining Ma","doi":"10.1109/ICCIS.2012.293","DOIUrl":null,"url":null,"abstract":"Solving of large sparse matrix linear equations is always the research focus of scientific and engineering calculation field. With the sparsity and symmetry characteristics of coefficient matrix, Compressed Sparse Row (CSR) is adopted in the storage of large sparse matrix linear equations. Under the condition of CSR, Symmetrica Successive Over Relaxations-Preconditioned Conjugate Gradient method (SSOR-PCG) is employed in the solution of large sparse matrix linear equations.","PeriodicalId":269967,"journal":{"name":"2012 Fourth International Conference on Computational and Information Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Storage and Solving of Large Sparse Matrix Linear Equations\",\"authors\":\"Chao Liu, Junmin Ye, Yining Ma\",\"doi\":\"10.1109/ICCIS.2012.293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving of large sparse matrix linear equations is always the research focus of scientific and engineering calculation field. With the sparsity and symmetry characteristics of coefficient matrix, Compressed Sparse Row (CSR) is adopted in the storage of large sparse matrix linear equations. Under the condition of CSR, Symmetrica Successive Over Relaxations-Preconditioned Conjugate Gradient method (SSOR-PCG) is employed in the solution of large sparse matrix linear equations.\",\"PeriodicalId\":269967,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2012.293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2012.293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

求解大型稀疏矩阵线性方程组一直是科学计算和工程计算领域的研究热点。利用系数矩阵的稀疏性和对称性特点,采用压缩稀疏行(Compressed Sparse Row, CSR)存储大型稀疏矩阵线性方程。在CSR条件下,采用对称连续过松弛-预条件共轭梯度法(SSOR-PCG)求解大型稀疏矩阵线性方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Storage and Solving of Large Sparse Matrix Linear Equations
Solving of large sparse matrix linear equations is always the research focus of scientific and engineering calculation field. With the sparsity and symmetry characteristics of coefficient matrix, Compressed Sparse Row (CSR) is adopted in the storage of large sparse matrix linear equations. Under the condition of CSR, Symmetrica Successive Over Relaxations-Preconditioned Conjugate Gradient method (SSOR-PCG) is employed in the solution of large sparse matrix linear equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信