无约束人脸验证中的判别谱回归度量学习

S. Chong, T. Ong, L. Chong
{"title":"无约束人脸验证中的判别谱回归度量学习","authors":"S. Chong, T. Ong, L. Chong","doi":"10.1109/ICoICT49345.2020.9166239","DOIUrl":null,"url":null,"abstract":"This paper presents the robustness of the proposed metric learning formulation, dubbed Discriminative Spectral Regression Metric Learning in offering a simplistic solution for measuring the Mahalanobis metric to solve unconstrained face verification problems. It takes advantage of distance metric learning on pairs of doublets by adopting the merit of the quadratic kernel function in the verification task. To be specific, the spectral graph analysis and the linear discriminant analysis are unified into the distance metric learning process for better exploitation of the intrinsic discriminant structure of face data. The proposed formulation is evaluated with four benchmarked constrained and unconstrained face datasets, with different tuning parameters under the restricted protocol. The promising result of 89.07% verification rate evinces the effectiveness and feasibility of the proposed formulation in unconstrained face verification compared to the state-of-the-art methods.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminative Spectral Regression Metric Learning in Unconstrained Face Verification\",\"authors\":\"S. Chong, T. Ong, L. Chong\",\"doi\":\"10.1109/ICoICT49345.2020.9166239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the robustness of the proposed metric learning formulation, dubbed Discriminative Spectral Regression Metric Learning in offering a simplistic solution for measuring the Mahalanobis metric to solve unconstrained face verification problems. It takes advantage of distance metric learning on pairs of doublets by adopting the merit of the quadratic kernel function in the verification task. To be specific, the spectral graph analysis and the linear discriminant analysis are unified into the distance metric learning process for better exploitation of the intrinsic discriminant structure of face data. The proposed formulation is evaluated with four benchmarked constrained and unconstrained face datasets, with different tuning parameters under the restricted protocol. The promising result of 89.07% verification rate evinces the effectiveness and feasibility of the proposed formulation in unconstrained face verification compared to the state-of-the-art methods.\",\"PeriodicalId\":113108,\"journal\":{\"name\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT49345.2020.9166239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了所提出的度量学习公式的鲁棒性,称为判别谱回归度量学习,为测量马氏度量来解决无约束人脸验证问题提供了一个简单的解决方案。该算法利用二次核函数在验证任务中的优点,利用了距离度量学习对对对的方法。将谱图分析和线性判别分析统一到距离度量学习过程中,更好地利用人脸数据的内在判别结构。在约束协议下,采用不同的调优参数对约束和非约束的人脸数据集进行了评估。89.07%的验证率证明了该方法在无约束人脸验证中的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Spectral Regression Metric Learning in Unconstrained Face Verification
This paper presents the robustness of the proposed metric learning formulation, dubbed Discriminative Spectral Regression Metric Learning in offering a simplistic solution for measuring the Mahalanobis metric to solve unconstrained face verification problems. It takes advantage of distance metric learning on pairs of doublets by adopting the merit of the quadratic kernel function in the verification task. To be specific, the spectral graph analysis and the linear discriminant analysis are unified into the distance metric learning process for better exploitation of the intrinsic discriminant structure of face data. The proposed formulation is evaluated with four benchmarked constrained and unconstrained face datasets, with different tuning parameters under the restricted protocol. The promising result of 89.07% verification rate evinces the effectiveness and feasibility of the proposed formulation in unconstrained face verification compared to the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信