{"title":"基于卷积神经网络的鲁棒人脸分析","authors":"B. Fasel","doi":"10.1109/ICPR.2002.1048231","DOIUrl":null,"url":null,"abstract":"Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task but is also robust with regard to face location changes and scale variations. This is achieved by deploying convolutional neural networks, which are either trained for facial expression recognition or face identity recognition. Combining the outputs of these networks allows us to obtain a subject dependent or personalized recognition of facial expressions.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"392 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Robust face analysis using convolutional neural networks\",\"authors\":\"B. Fasel\",\"doi\":\"10.1109/ICPR.2002.1048231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task but is also robust with regard to face location changes and scale variations. This is achieved by deploying convolutional neural networks, which are either trained for facial expression recognition or face identity recognition. Combining the outputs of these networks allows us to obtain a subject dependent or personalized recognition of facial expressions.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"392 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust face analysis using convolutional neural networks
Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task but is also robust with regard to face location changes and scale variations. This is achieved by deploying convolutional neural networks, which are either trained for facial expression recognition or face identity recognition. Combining the outputs of these networks allows us to obtain a subject dependent or personalized recognition of facial expressions.