高斯多项式阈值函数的小PRG

D. Kane
{"title":"高斯多项式阈值函数的小PRG","authors":"D. Kane","doi":"10.1109/FOCS.2011.16","DOIUrl":null,"url":null,"abstract":"We discuss a psuedorandom generator to $\\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\\log(n) \\epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the \"noisy derivative\" of a function and a stronger version of standard anticoncentration results.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Small PRG for Polynomial Threshold Functions of Gaussians\",\"authors\":\"D. Kane\",\"doi\":\"10.1109/FOCS.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a psuedorandom generator to $\\\\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\\\\log(n) \\\\epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the \\\"noisy derivative\\\" of a function and a stronger version of standard anticoncentration results.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们讨论了关于种子长度为$2^O_c(d)\log(n) \epsilon^{-4-c}$的高斯分布的伪随机生成器$\epsilon$ -fool次多项式阈值函数。我们的分析涉及了几个新想法,包括我们称之为函数的“噪声导数”和标准反集中结果的更强版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Small PRG for Polynomial Threshold Functions of Gaussians
We discuss a psuedorandom generator to $\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\log(n) \epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the "noisy derivative" of a function and a stronger version of standard anticoncentration results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信