{"title":"高斯多项式阈值函数的小PRG","authors":"D. Kane","doi":"10.1109/FOCS.2011.16","DOIUrl":null,"url":null,"abstract":"We discuss a psuedorandom generator to $\\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\\log(n) \\epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the \"noisy derivative\" of a function and a stronger version of standard anticoncentration results.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Small PRG for Polynomial Threshold Functions of Gaussians\",\"authors\":\"D. Kane\",\"doi\":\"10.1109/FOCS.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a psuedorandom generator to $\\\\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\\\\log(n) \\\\epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the \\\"noisy derivative\\\" of a function and a stronger version of standard anticoncentration results.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Small PRG for Polynomial Threshold Functions of Gaussians
We discuss a psuedorandom generator to $\epsilon$-fool degree-d polynomial threshold functions with respect to the Gaussian distribution with seed length $2^O_c(d)\log(n) \epsilon^{-4-c}$. Our analysis involves several new ideas including what we term the "noisy derivative" of a function and a stronger version of standard anticoncentration results.