面向LASIS数据无损压缩的双向预测矢量量化

Jing Ma, Chengke Wu, Yunsong Li, Keyan Wang
{"title":"面向LASIS数据无损压缩的双向预测矢量量化","authors":"Jing Ma, Chengke Wu, Yunsong Li, Keyan Wang","doi":"10.1109/DCC.2009.13","DOIUrl":null,"url":null,"abstract":"Large Aperture Static Imaging Spectrometer(LASIS) is a new kind ofinterferometer spectrometer with the advantages of high throughputand large field of view. The LASIS data contains both spatial andspectral information in each frame which indicate the location shifting and modulatedoptical signal along Optical Path Difference(OPD). Based on these characteristics,we propose a lossless data compression method named Dual-directionPrediction Vector Quantization(DPVQ). With a dual-directionprediction on both spatial and spectral direction, redundancy inLASIS data is largely removed by minimizing the prediction residuein DPVQ. Then a fast vector quantization(VQ) avoiding codebooksplitting process is applied after prediction. Considering timeefficiency, the prediction and VQ in DPVQ are optimized to reducethe calculations, so that optimized prediction saves 60\\% runningtime and fast VQ saves about 25\\% running time with a similarquantization quality compared with classical generalized Lloydalgorithm(GLA). Experimental results show that DPVQ can achieve amaximal Compression Ratio(CR) at about 3.4, which outperforms manyexisting lossless compression algorithms.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dual-Direction Prediction Vector Quantization for Lossless Compression of LASIS Data\",\"authors\":\"Jing Ma, Chengke Wu, Yunsong Li, Keyan Wang\",\"doi\":\"10.1109/DCC.2009.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Aperture Static Imaging Spectrometer(LASIS) is a new kind ofinterferometer spectrometer with the advantages of high throughputand large field of view. The LASIS data contains both spatial andspectral information in each frame which indicate the location shifting and modulatedoptical signal along Optical Path Difference(OPD). Based on these characteristics,we propose a lossless data compression method named Dual-directionPrediction Vector Quantization(DPVQ). With a dual-directionprediction on both spatial and spectral direction, redundancy inLASIS data is largely removed by minimizing the prediction residuein DPVQ. Then a fast vector quantization(VQ) avoiding codebooksplitting process is applied after prediction. Considering timeefficiency, the prediction and VQ in DPVQ are optimized to reducethe calculations, so that optimized prediction saves 60\\\\% runningtime and fast VQ saves about 25\\\\% running time with a similarquantization quality compared with classical generalized Lloydalgorithm(GLA). Experimental results show that DPVQ can achieve amaximal Compression Ratio(CR) at about 3.4, which outperforms manyexisting lossless compression algorithms.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大孔径静态成像光谱仪(LASIS)是一种新型干涉仪光谱仪,具有高通量和大视场的优点。LASIS数据在每一帧中都包含空间和光谱信息,这些信息表明了沿光程差(OPD)的位置移位和调制光信号。基于这些特点,我们提出了一种无损数据压缩方法——双向预测矢量量化(dual - directional prediction Vector Quantization, DPVQ)。通过对空间和光谱方向的双向预测,通过最小化DPVQ的预测残差,lasis数据中的冗余很大程度上被消除了。然后在预测后应用快速矢量量化(VQ)避免码薄分裂过程。考虑到时间效率,对DPVQ中的预测和VQ进行了优化,减少了计算量,与经典的广义劳埃德算法(GLA)相比,优化的预测节省了60%的运行时间,快速的VQ节省了25%的运行时间,并且量化质量相似。实验结果表明,DPVQ可以实现3.4左右的最大压缩比(CR),优于现有的许多无损压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Direction Prediction Vector Quantization for Lossless Compression of LASIS Data
Large Aperture Static Imaging Spectrometer(LASIS) is a new kind ofinterferometer spectrometer with the advantages of high throughputand large field of view. The LASIS data contains both spatial andspectral information in each frame which indicate the location shifting and modulatedoptical signal along Optical Path Difference(OPD). Based on these characteristics,we propose a lossless data compression method named Dual-directionPrediction Vector Quantization(DPVQ). With a dual-directionprediction on both spatial and spectral direction, redundancy inLASIS data is largely removed by minimizing the prediction residuein DPVQ. Then a fast vector quantization(VQ) avoiding codebooksplitting process is applied after prediction. Considering timeefficiency, the prediction and VQ in DPVQ are optimized to reducethe calculations, so that optimized prediction saves 60\% runningtime and fast VQ saves about 25\% running time with a similarquantization quality compared with classical generalized Lloydalgorithm(GLA). Experimental results show that DPVQ can achieve amaximal Compression Ratio(CR) at about 3.4, which outperforms manyexisting lossless compression algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信