利用虚拟驾驶测试数据对hiv相关神经认知障碍驾驶员进行分类

David Grethlein, Venk Kandadai, W. Dampier
{"title":"利用虚拟驾驶测试数据对hiv相关神经认知障碍驾驶员进行分类","authors":"David Grethlein, Venk Kandadai, W. Dampier","doi":"10.32473/flairs.36.133381","DOIUrl":null,"url":null,"abstract":"In this work we focus on the problem of identifying drivers with neurocognitive impairment (NCI), specifically an NCI specific to people with HIV (PWH) called HIV-associated neurocognitive disorders (HAND) directly from driving simulator data. Since NCI-screening is typically only effective for more progressed forms of HAND, there is a critical need to identify individuals that should be referred to specialists in order to mitigate potentially dangerous driving behaviors and improve their quality of life. Data collected from (n = 81) study participants that used the virtual driving test (VDT) platform were analyzed in order to predict which drivers had NCI. Of the (n = 62) PWH participants recruited, (n = 35) had HAND; of the remaining (n = 19) HIV negative participants, (n = 7) had non-HAND NCI (e.g., Parkinson’s Disease, Alzheimer’s, etc.). In three separate experiments, subsets of VDT data were first selected via Kruskal-Wallis feature ranking and then used as ensemble inputs to classify whether or not drivers had NCI. Within the PWH population, HAND could be classified with 69.4% accuracy and a risk ratio of 2.09 (95% CI 1.52, 2.65); within the HIV negative population, non-HAND NCI could be classified with 84.2% accuracy, risk ratio of 8.25 (6.34, 10.16); and within the combined population, NCI (regardless of causation) could be classified with 63.0% accuracy, risk ratio of 1.67 (1.22, 2.11).","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Drivers with HIV-Associated Neurocognitive Disorders using Virtual Driving Test Performance Data\",\"authors\":\"David Grethlein, Venk Kandadai, W. Dampier\",\"doi\":\"10.32473/flairs.36.133381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we focus on the problem of identifying drivers with neurocognitive impairment (NCI), specifically an NCI specific to people with HIV (PWH) called HIV-associated neurocognitive disorders (HAND) directly from driving simulator data. Since NCI-screening is typically only effective for more progressed forms of HAND, there is a critical need to identify individuals that should be referred to specialists in order to mitigate potentially dangerous driving behaviors and improve their quality of life. Data collected from (n = 81) study participants that used the virtual driving test (VDT) platform were analyzed in order to predict which drivers had NCI. Of the (n = 62) PWH participants recruited, (n = 35) had HAND; of the remaining (n = 19) HIV negative participants, (n = 7) had non-HAND NCI (e.g., Parkinson’s Disease, Alzheimer’s, etc.). In three separate experiments, subsets of VDT data were first selected via Kruskal-Wallis feature ranking and then used as ensemble inputs to classify whether or not drivers had NCI. Within the PWH population, HAND could be classified with 69.4% accuracy and a risk ratio of 2.09 (95% CI 1.52, 2.65); within the HIV negative population, non-HAND NCI could be classified with 84.2% accuracy, risk ratio of 8.25 (6.34, 10.16); and within the combined population, NCI (regardless of causation) could be classified with 63.0% accuracy, risk ratio of 1.67 (1.22, 2.11).\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们专注于识别驾驶员神经认知障碍(NCI)的问题,特别是直接从驾驶模拟器数据中识别HIV相关神经认知障碍(HAND)的NCI患者(PWH)。由于nci筛查通常只对进展更严重的HAND有效,因此迫切需要识别应该转介给专家的个体,以减轻潜在的危险驾驶行为并改善他们的生活质量。从使用虚拟驾驶测试(VDT)平台的研究参与者(n = 81)收集的数据进行分析,以预测哪些驾驶员患有NCI。在招募的(n = 62) PWH参与者中,(n = 35)患有HAND;其余(n = 19)名HIV阴性参与者(n = 7)患有非hand NCI(如帕金森病、阿尔茨海默病等)。在三个独立的实验中,首先通过Kruskal-Wallis特征排序选择VDT数据子集,然后将其作为集成输入来分类驾驶员是否具有NCI。在PWH人群中,HAND的分类准确率为69.4%,风险比为2.09 (95% CI 1.52, 2.65);在HIV阴性人群中,non-HAND NCI分类准确率为84.2%,风险比为8.25 (6.34,10.16);在联合人群中,NCI(无论因果关系如何)分类准确率为63.0%,风险比为1.67(1.22,2.11)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Drivers with HIV-Associated Neurocognitive Disorders using Virtual Driving Test Performance Data
In this work we focus on the problem of identifying drivers with neurocognitive impairment (NCI), specifically an NCI specific to people with HIV (PWH) called HIV-associated neurocognitive disorders (HAND) directly from driving simulator data. Since NCI-screening is typically only effective for more progressed forms of HAND, there is a critical need to identify individuals that should be referred to specialists in order to mitigate potentially dangerous driving behaviors and improve their quality of life. Data collected from (n = 81) study participants that used the virtual driving test (VDT) platform were analyzed in order to predict which drivers had NCI. Of the (n = 62) PWH participants recruited, (n = 35) had HAND; of the remaining (n = 19) HIV negative participants, (n = 7) had non-HAND NCI (e.g., Parkinson’s Disease, Alzheimer’s, etc.). In three separate experiments, subsets of VDT data were first selected via Kruskal-Wallis feature ranking and then used as ensemble inputs to classify whether or not drivers had NCI. Within the PWH population, HAND could be classified with 69.4% accuracy and a risk ratio of 2.09 (95% CI 1.52, 2.65); within the HIV negative population, non-HAND NCI could be classified with 84.2% accuracy, risk ratio of 8.25 (6.34, 10.16); and within the combined population, NCI (regardless of causation) could be classified with 63.0% accuracy, risk ratio of 1.67 (1.22, 2.11).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信