支线:用超大规模的城市基础设施数据支持最后一英里的交通

Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, Tian He
{"title":"支线:用超大规模的城市基础设施数据支持最后一英里的交通","authors":"Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, Tian He","doi":"10.1145/2737095.2737121","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a transit service Feeder to tackle the last-mile problem, i.e., passengers' destinations lay beyond a walking distance from a public transit station. Feeder utilizes ridesharing-based vehicles (e.g., minibus) to deliver passengers from existing transit stations to selected stops closer to their destinations. We infer real-time passenger demand (e.g., exiting stations and times) for Feeder design by utilizing extreme-scale urban infrastructures, which consist of 10 million cellphones, 27 thousand vehicles, and 17 thousand smartcard readers for 16 million smartcards in a Chinese city Shenzhen. Regarding these numerous devices as pervasive sensors, we mine both online and offline data for a two-end Feeder service: a back-end Feeder server to calculate service schedules; front-end customized Feeder devices in vehicles for real-time schedule downloading. The evaluation results show that compared to the ground truth, Feeder reduces last-mile distances by 68% and travel time by 52% on average.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Feeder: supporting last-mile transit with extreme-scale urban infrastructure data\",\"authors\":\"Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, Tian He\",\"doi\":\"10.1145/2737095.2737121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a transit service Feeder to tackle the last-mile problem, i.e., passengers' destinations lay beyond a walking distance from a public transit station. Feeder utilizes ridesharing-based vehicles (e.g., minibus) to deliver passengers from existing transit stations to selected stops closer to their destinations. We infer real-time passenger demand (e.g., exiting stations and times) for Feeder design by utilizing extreme-scale urban infrastructures, which consist of 10 million cellphones, 27 thousand vehicles, and 17 thousand smartcard readers for 16 million smartcards in a Chinese city Shenzhen. Regarding these numerous devices as pervasive sensors, we mine both online and offline data for a two-end Feeder service: a back-end Feeder server to calculate service schedules; front-end customized Feeder devices in vehicles for real-time schedule downloading. The evaluation results show that compared to the ground truth, Feeder reduces last-mile distances by 68% and travel time by 52% on average.\",\"PeriodicalId\":318992,\"journal\":{\"name\":\"Proceedings of the 14th International Conference on Information Processing in Sensor Networks\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th International Conference on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737095.2737121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2737121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了一个公交服务馈线来解决最后一英里问题,即乘客的目的地距离公共交通站点超出步行距离。Feeder利用基于拼车的车辆(例如小巴)将乘客从现有的中转站运送到离目的地更近的选定站点。我们通过利用超大规模的城市基础设施来推断馈线设计的实时乘客需求(例如,出站和时间),该基础设施包括中国城市深圳的1000万部手机、2.7万辆汽车和1.7万个智能卡读卡器(1600万张智能卡)。将这些众多的设备视为无处不在的传感器,我们为一个两端馈线服务挖掘在线和离线数据:一个后端馈线服务器计算服务时间表;车辆前端定制馈线设备,用于实时调度下载。评估结果表明,与地面实际情况相比,Feeder平均减少了68%的最后一英里距离和52%的旅行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feeder: supporting last-mile transit with extreme-scale urban infrastructure data
In this paper, we propose a transit service Feeder to tackle the last-mile problem, i.e., passengers' destinations lay beyond a walking distance from a public transit station. Feeder utilizes ridesharing-based vehicles (e.g., minibus) to deliver passengers from existing transit stations to selected stops closer to their destinations. We infer real-time passenger demand (e.g., exiting stations and times) for Feeder design by utilizing extreme-scale urban infrastructures, which consist of 10 million cellphones, 27 thousand vehicles, and 17 thousand smartcard readers for 16 million smartcards in a Chinese city Shenzhen. Regarding these numerous devices as pervasive sensors, we mine both online and offline data for a two-end Feeder service: a back-end Feeder server to calculate service schedules; front-end customized Feeder devices in vehicles for real-time schedule downloading. The evaluation results show that compared to the ground truth, Feeder reduces last-mile distances by 68% and travel time by 52% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信